
The Implementation of MOLA to L3 Compiler

Agris Sostaks1, Audris Kalnins2

1,2 University of Latvia, Institute of Mathematics and Computer Science, Raina blvd 29,
LV-1459 Riga, Latvia

1Agris.Shostaks@gmail.com, 2Audris.Kalnins@mii.lu.lv

Abstract. The implementation of the model transformation language MOLA
compiler to the L3 language is described in the paper. It is shown that L3 is a
suitable low-level model transformation language for efficient implementation
of pattern matching in MOLA. A rationale for the chosen compiler architecture
is offered. The detailed description of mappings from MOLA to L3 is also
given. Some general approach to the graphical language compiler development,
such as model-driven compiling and debugging, is also sketched.

Keywords: Graphical model transformation language, MOLA, L3, Lx,
compiler, model-driven compiling.

1 Introduction

Model transformations play an important role in the Model-Driven Software
Development (MDSD) [1]. The main idea of MDSD is a systematic use of models as
primary software engineering artefacts throughout the software development
lifecycle. Model-Driven Development refers to a range of development approaches
that are based on the use of software modelling. A model expresses a particular aspect
of a software system in a certain level of detail. A code of the software system is
generated from models built by a system developer. The generated code varies
ranging from a system skeleton to a complete product. It depends on the abstraction
level of models used as a source for the generator. If the created models are at high
level of abstraction, then model transformations are applied to create more detailed
models that can be used for code generation. The model transformation is the
automatic generation of a target model from a source model, according to a
transformation definition [2]. Model transformation languages are used to define
model transformations. Models that are used by model transformations must conform
to metamodels. A metamodel defines a language which specifies a model. A model
transformation language uses metamodels to define the model transformation. A
meta-language specifies the metamodels. The general architecture of model
transformations is shown in Fig.1.
The best known Model-Driven Software Development initiative is the Object
Management Group (OMG) [3] Model-Driven Architecture (MDA) [4], which is a
registered trademark of OMG. The OMG has developed the set of standards related to

1 Partially supported by ESF (European Social Fund),
project 2004/0001/VPD1/ESF/PIAA/04/NP/3.2.3.1/0001/0001/0063

MDA, including the Meta-Object Facility (MOF) [5] (a meta-language), Object
Constraint Language (OCL) [6], Unified Modelling Language (UML) [7] (a software
development language), and MOF Queries/Views/Transformations (MOF-QVT) [8]
(a model transformation language).

The MDA approach defines system functionality using a platform-independent
model (PIM) that is written in an appropriate modelling language (for example,
UML). Then the PIM is transformed to one or more platform-specific models (PSMs),
which include platform- or language-specific details. For example, the UML Profile
for Java [9] can be used to specify the PSM. Then the PSM is translated to the code
written in the language appropriate to the PSM.

Today the application area for model transformation languages is much broader.
One such area is generic meta-model-based modelling tool building. The model
transformation languages can be used (and are used [10, 11, 12]) as a much more
effective domain specific substitute for the general purpose languages that are used
for tool building up to now. This paper shows that model transformation languages
also become appropriate facilities for compiler building. Thus, domains for
applications of model transformation languages are quite different, but the typical
language constructs used for model processing in all these domains are quite similar.

The OMG was the first to state precisely the requirements what should be a model
transformation language [13]. The MOF-QVT language, which is an answer by OMG
itself to these requirements, becomes the OMG standard for model transformations
[8]. In MOF-QVT source and target meta-models conform to the MOF. There are two
variants of MOF defined – the EMOF (Essential MOF) and the CMOF (Complete
MOF). The MOF can be viewed as a general standard to write metamodels, but, more
specifically, EMOF is used for metamodel definition in MOF-QVT. The MOF-QVT
standard defines two languages of transformation development – the Relations and

Model1Model1

Meta-
model1
Meta-
model1

Model2Model2

Meta-
model2
Meta-
model2

Meta-
meta-
model

TLTL

Fig. 1 Model transformation

the Operational Mappings. The Relations language is at the highest level of
abstraction and uses patterns and a declarative transformation definition style
whenever possible. This language has two semantically equivalent concrete syntaxes
– a graphical and a textual one. The Operational Mappings language is an imperative
textual language. The syntax of the Operational Mappings provides constructs
commonly found in imperative languages (loops, conditions, etc), while the
management of model elements is based on extended OCL constructs. Actually, the
MOF-QVT specification [8] also contains the third language – the Core. The role of
this language is to serve for semantic definition of the first two OMG languages and
also for possible implementation of these languages. There are several realizations of
the MOF-QVT language. The Relations textual language is implemented in the
medini QVT [14]. The Operational Mappings language is implemented in the
SmartQVT [15], several less complete implementations are also available.

There are many other model transformation languages which also satisfy the OMG
requirements. There are textual model transformation languages – ATL [16],
VIATRA2 [17], the Lx language family (L0-L3) [18] and also graphical model
transformation languages – Fujaba [19], GReAT [20], MOLA [21]. In fact, model
transformation languages existed even before the OMG coined this concept. These
were the graph transformation languages, which were used to transform a source
graph to a target graph in a rule-based manner. The structure of both graphs was
defined by means of graph grammars which, in fact, are the same metamodels. There
are several such graph transformation languages that are now being used as the model
transformation languages, for example, AGG [22] and PROGRES [23].

Most of the model transformation languages rely on an EMOF-compatible meta-
language for defining metamodels. For example, Fujaba and GReAT use class
diagram notations close to EMOF, and ATL uses KM3 [24] (a certain extension of
EMOF). Sometimes meta-languages are used that are much more expressive than
EMOF, for example, VTML [25] for the VIATRA2 language. An implementation of
a metamodelling language is closely related to the specific repository used for storing
models.

An efficient implementation of model transformation languages is still a topical
issue. There are several possibilities of implementation. A direct compilation to a
general purpose programming language is a common approach (AGG, Fujaba,
GReAT). The result of the compilation contains invocations of the API of the
repository used to manage models and the corresponding metamodel. Another
possibility is a compilation to an intermediate “very low-level” transformation
language, for example, ATL uses the so called ATL byte-code [26]. It is also possible
to build a direct interpreter of a model transformation language, as it is done for the
VIATRA2 language.

The model transformation language MOLA is developed by the University of
Latvia, Institute of Mathematics and Computer Science. This paper describes the
implementation of the MOLA compiler. The MOLA compiler uses a different
approach by compiling MOLA to L3, which is a lower-level textual model
transformation language, but still has features typical of a transformation language.
The L3 language is an imperative language which also includes imperative facilities
for pattern definition; therefore, the compilation of declarative patterns in MOLA is
the only complicated part of MOLA to L3 compiler realization. The L3 language is

efficient regarding implementation [27], and it is also developed by UL, IMCS. The
L3 language is also used for the development of MOLA compiler. In other words, the
compiler itself is built as a model transformation. Therefore, the chosen
implementation is relatively simple and at the same time guarantees efficiency of
implementation.

A brief introduction to the MOLA language is given in chapter 2. The experience
gained in building the previous MOLA realizations is described in chapter 3. The
language family Lx is introduced in chapter 4. The general architecture of the MOLA
compiler and a brief overview of the model-driven compiling are given in chapter 5.
Mappings from MOLA to L3 are described in details in chapter 6. Chapter 7 contains
MOLA environment problem descriptions and possible solutions that are not directly
related to the compiling process.

2 MOLA Language

MOLA is a graphical model transformation language, which is used for transforming
an instance of a source metamodel (the source model) into an instance of the target
metamodel (the target model). A transformation definition in MOLA consists of the
source and target metamodel definitions and one or more MOLA procedures.

Fig. 2. The metamodel of the MOLA metamodelling language

Source and target metamodels are jointly defined in the MOLA metamodelling
language, which is quite close to the OMG EMOF specification [8]. These
metamodels are defined by means of one or more class diagrams, packages may be
used in a standard way to group the metamodel classes. Actually, the division into
source and target parts of the metamodel is quite semantic, as they are not separated
syntactically (the complete metamodel may be used in transformation procedures in a
uniform way). Typically, additional mapping associations link the corresponding
classes from source and target metamodels; they facilitate the building of natural
transformation procedures and document the performed transformations. The source
and target metamodel may be the same – that is the case for in-place model update
transformations. The MOLA metamodelling language is defined formally in the
Kernel package of the MOLA metamodel (see Fig. 2).

MOLA procedures form the executable part of a MOLA transformation. One of
these procedures is the main one, which starts the whole transformation. MOLA
procedure is built as a traditional structured program, but in a graphical form.
Similarly to UML activity diagrams (and conventional flowcharts), control flow
arrows determine the order of execution of MOLA statements. Call statements are
used to invoke sub-procedures. However, the basic language statement of MOLA
procedures is specific to the model transformation domain – it is the rule. Rules
embody the pattern match paradigm, which is typical of model transformation
languages. Each rule in MOLA has the pattern and the action part. Both are defined
by means of class-elements and -links. A class-element is a metamodel class,
prefixed by the element (“role”) name (graphically shown in a way similar to UML
instance). An association-link connecting two class-elements corresponds to an
association linking the respective classes in the metamodel. A pattern is a set of class-
elements and -links which are compatible to the metamodel for this transformation. A
pattern may simply be a metamodel fragment, but a more complicated situation is also
possible – several class-elements may reference the same metamodel class – certainly,
their element names must differ (these elements play different roles in the pattern,
e.g., the start and end node of an edge). A class-element may also contain a constraint
– a Boolean expression in a simplified subset of OCL. The main semantics of a rule is in
its pattern match – an instance set in the model must be found, where an instance of
the appropriate class is allocated to each class-element so that all required links are
present in this set and all constraints evaluate to true. If such a match is found, the
action part of the rule is executed. The action part also consists of class-elements and
links, but typically these are create-actions – the relevant instances and links must be
created. An end of a create-link may also be attached to a class-element included in
pattern. Assignments in class-elements may be used to set the attribute values of the
instances. Instances may also be deleted and modified in the action part. Thus a rule
in MOLA typically is used to locate some construct in the source model and build a
required equivalent construct in the target model. If several instance sets in the model
satisfy the rule pattern, the rule is executed only once (on an arbitrarily chosen
match). Such a situation should be addressed by another related construct in MOLA –
the loop construct. In addition, the reference mechanism (a class-element may be a
reference to an already matched or created instance in a previous rule) is used to
restrict the available match set. Thus, rules are typically used in MOLA in situations
where at most one match is possible. Certainly, there may be a situation when no

match exists – then the rule is not executed at all. To distinguish this situation, a rule
may have a special ELSE-exit (a control flow labelled ELSE), which is traversed
namely in this situation. Thus, a rule plays in MOLA the role of an if-then-else
construct as well.

Another essential construct in MOLA is the loop (more concretely, for-each loop).
The loop is a rectangular frame, which contains one special rule – the loophead. The
loophead is a rule which contains one specially marked (by a bold border) element –
the loop variable. The semantics of a for-each loop is that it is executed for all
possible matches for the loophead, which differ by instances allocated to the loop
variable (possible variations for other loop head elements are not taken into account).
In fact, a for-each loop is an iterator which iterates through all possible instances of
the loop variable class that satisfy the constraint imposed by the pattern in the
loophead. With respect to other elements of the pattern in the loop head, the
“existential semantics” is in use – there must be a match for these elements, but it
does not matter whether there are one or several such matches. Thus a for-each loop is
the main MOLA construct, which is used to code a situation: “for each instance of . . .
which satisfies . . . perform the following transformation. . . ”. Namely such situations
in informal descriptions of model transformations are frequently called transformation
rules, but in MOLA they must be formalised as for-each loops. In addition to the
loophead, a loop typically contains the loop body – other MOLA statements whose
execution order is organised by control flows. The loop body is executed for each
iteration of the loop. Since the loop head is a rule, it may also contain create actions,
thus simple transformations of source model elements may be coded in MOLA by
loops consisting of the loop head only. For nested loops the main organising feature is
the possibility to reference the loop variable (and other elements) of the main loop in
the pattern of the nested loop head, thus specifying an iteration over all related
instances (to the current instance in the main loop).

There also are other available constructs in MOLA procedures. Procedures may
have parameters (of type of a metamodel class or a primitive type) and local
variables (also of both types). These elements may be used in MOLA rules, in
addition, text-statements (consisting of a constraint and assignments) may be used to
process these elements more directly. For primitive-typed variables the text statement
is the only option. A text statement containing a constraint (a Boolean expression)
may also have an ELSE-exit and serve as an if-then-else construct (in addition to
rule). Besides MOLA procedures, external (coded in an OOPL) procedures can also
be invoked; this feature is used for low-level data processing (e.g., model data
import). It should be noted that MOLA has no built-in UI support (MOLA is oriented
towards behind-the-scenes transformations), therefore diagnostic messages and
similar situations should be addressed via a library of external procedures. All MOLA
procedure elements are defined formally in the MOLA package of the MOLA
metamodel (see Fig. 3).

Fig. 3. The metamodel of the MOLA procedure elements

The execution of a MOLA transformation on a source model starts from the main
procedure. A loop is executed while there are instances to iterate over, then the next
construct according to the control flow is executed. If a rule without a valid match is
to be executed, and this rule has no ELSE-exit, then the current procedure is
terminated (if this occurs outside a loop) or the next iteration of the loop is started
(within a loop body). When the main procedure reaches its end, the transformation is
completed.

3 Previous Realizations of MOLA

The most critical part of the implementation of a pattern-based transformation
language is the implementation of the pattern matching. It has been already shown
[28] that an efficient MOLA pattern matching implementation is possible. This
realization is based on only few specific low-level operations needed to iterate over a
model. They are:

• getNext(Class Cl) – returns the next instance of a metaclass Cl upon
each call. There is also an initialization for it –
initializeGetNext(Class Cl)

• getNextByLink(Association as, Cl1 inst, Class Cl2) –
returns one by one instances of a metaclass Cl2 that can be reached by links
corresponding to association as from a fixed instance inst. There is also
an initialization for it, with similar parameters –
initializeGetNextByLink(Association as, Cl1 inst,
Class Cl2)

• checkLink(Cl1 inst1, Cl2 inst2, Association as) –
checks whether a link of the required type is between these instances

• eval(Cl inst, Expr exp) – evaluates a local constraint on
attributes

Thus, the target language of the MOLA compiler or the API of a repository that is
used for realization of the MOLA interpreter (Virtual Machine) must contain similar
operations. This approach requires the implementation of the pattern matching
algorithm using such low-level constructs. That is a sufficiently complicated task.
Another approach that can be used for pattern matching is to rely on some powerful
high-level pattern matching language and build mappings from MOLA to it. An
appropriate model repository must also be chosen.

The previous realization of MOLA [29] used SQL queries as a pattern matching
language and a relational database as the model repository. A fixed database schema
had been defined in the most natural way by storing the metamodel in tables which
correspond to the EMOF metamodel classes. The storage of model elements –
instances of metamodel classes, associations, and attributes was completely
straightforward in the corresponding tables. A MOLA program was also naturally
stored in tables according to the MOLA metamodel. The main idea was to map a
MOLA pattern to a single SQL statement. SQL queries generated by this realization
were large self-join queries that are non-typical of standard database applications. The

database engines were performing efficiently for queries if the number of class
elements in a MOLA pattern did not exceed a certain number. Experiments and
benchmark tests had shown that the implemented MOLA Virtual Machine performed
satisfactorily and MOLA is a suitable transformation language for typical MDSD
tasks. However, for an industrial usage of MOLA a special in-memory repository and
a compiler/interpreter that implements the principles described in [28] is required.

The next step in the realization of the model transformation language MOLA was
to search for a solution which satisfies the requirements mentioned above.

4 Lx Language Family

The search for a suitable solution for the MOLA realization revealed that an
appropriate language and also a repository could be found nearby. The model
transformation languages Lx [18] (the so called Lx language family) fulfil the
requirements mentioned in the previous chapter. Textual model transformation
languages Lx contain the base transformation language L0 and its related
transformation languages L0’, L1, L2 and L3. Each of these languages is based on the
previous language of this family by adding some extra features.

The model transformation language L3 has been chosen as a target language for the
MOLA compiler. A more detailed description of the Lx language family is available
in [32] and [27]; however, a brief overview of all these languages is given in this
chapter in order to make this paper understandable without reading the papers
mentioned above.

4.1 Lx Metamodelling Facilities

The Lx language family, as any other model transformation language, uses some sort
of metamodelling language. It is quite close to the OMG EMOF specifications. The
main difference is that multiple generalization is not allowed and there are no
packages in this metamodelling language. The metamodel of this language is shown
in Fig. 4.

Classes and binary associations are core elements of this language. Classes can have
attributes which can be primitive or enumeration-typed. There are four pre-defined
primitive types – String, Integer, Boolean, and Real. There are no possibilities to
define new ones.
The basic commands (constructs for a textual definition of a metamodel) of the Lx
family metamodelling language are the following:

o class <className>; – defines class with a given name.
o attr <className>.<attrName>:<ElementaryTypeName>; – defines

attribute with a given name and type.
o assoc <className>.

{ordered}<card><roleName>/<roleName><card>{ordered}.
<className>; – defines association with corresponding properties.

o compos <compositeClassName>.
{ordered}<card><roleName>/<roleName><card>
{ordered}.<partClassName>; – defines compositions with
corresponding properties.

o rel <subClassName>.subClassOf.<superClassName>; – defines a
generalization relationship between given classes.

o enum <enumName>:{ <enumLiteral1> , < enumLiteral2>, … }; –
defines enumeration with given elements.

4.2 Language L0

An elementary unit of L0 transformation is a command (an imperative statement). L0
transformation contains several parts:

• global variable definition part;

Fig. 4. The metamodel of Lx metamodelling language

• native subprogram (function or procedure) declaration part (used C++ library
function headers);

• L0 subprogram definition part. Exactly one subprogram in this part is the
main. The main subprogram defines the entry point of the transformation.
An L0 subprogram definition also consists of several parts:

o Subprogram header
 procedure <procName>(<paramList>); Subprogram

header, the (formal) parameter list can be empty.
Parameter list consists of formal parameter definitions
separated by “,”. A parameter definition consists of its
name, the parameter type (the type can be an elementary
type or a class from the metamodel), and the passing
method (parameters can be passed by reference or by
value). If the parameter is passed by reference, its type
name is preceded by the & character.

 function <funcName>(<paramList>): <returnType>; –
return type name can be an elementary type name or class
name.

o Local variable definitions

 pointer <pointerName> : <className>; – defines a
pointer to objects of class <className>.

 var <varName> : <ElementaryTypeName>; – defines a
variable of elementary type. <ElementaryTypeName> is
one of elementary types.

o Keyword begin – starts subprogram body definition
o Subprogram body definition
o Keyword end - ends subprogram body definition.

The subprogram body definition may contain the following commands:
1. return; – returns execution control to caller procedure or function.

2. call <subProgName>(<actPrmList>); – calls a subprogram. Actual parameters
list can be empty. Actual parameter list consists of binary expressions separated
by “,”.

3. label <labelName>; – defines a label with the given name.

4. goto <label>; – unconditionally transfers control to <label>. <label> should be
located in the current subprogram.

5. first <pointer> : <className> else <label>; – positions <pointer> to an arbitrary
object of <className>. Typically, this command in combination with the next
command is used to traverse all objects of the given class (including subclass
objects). If <className> does not have objects, <pointer> becomes null, and
execution control is transferred to the <label>. The <className> in this
command must be the same as (or a subclass of) the class used in pointer

definition. If it is a subclass, then the pointer value set is narrowed (for the
subsequent executions of next).

6. first <pointer1> : <className> from <pointer2> by <roleName> else <label>;
– similar to the previous command. The difference is that it positions <pointer1>
to an arbitrary class object, which is reachable from <pointer2> by the link
<roleName>. Similarly, this command in combination with the next command is
used to traverse all objects linked to an object by the given link type.

7. next <pointer> else <label>; – gets the next object, which satisfies conditions,
formulated during the execution of the corresponding first and which has not
been visited (iterated) with this variable yet. If there is no such object, the
<pointer> becomes null, and execution control is transferred to <label>.

8. addObj <pointer>:<className>; – creates a new object of the class
<className>.

9. addLink <pointer1>.<roleName>.<pointer2>; – creates a new link (of type
specified by <roleName>) between the objects pointed to by the <pointer1> and
<pointer2> , respectively.

10. deleteObj <pointer>; – deletes the object, which is pointed to by <pointer>.

11. deleteLink <pointer1>.<roleName>.<pointer2>; – deletes link whose type is
specified by <roleName> between objects pointed to by <pointer1> and
<pointer2>, respectively.

12. setPointer <pointer1>=<pointer2>; – sets <pointer1> to the object which is
pointed to by <pointer2>. Instead of <pointer2> the null constant can be used.

13. setVar <variable> = <binExpr>; – sets <variable> to <binExpr> value.
<binExpr> is a binary expression consisting of the following elements:
elementary variables, subprogram parameters (of elementary types), literals,
object attributes, and standard operators (+,-,*,/,&&,||,!).

14. setAttr <pointer>.<attrName>=<binExpr>; – sets the value of attribute
<attrName> (of the object, pointed to by <pointer>) to the <binExpr> value.

15. type <pointer> == <className> else <label>; – if the type of the pointed object
is identical to the <className>, then control is transferred to the next command,
else control is transferred to <label>. Instead of the equality symbol == an
inequality symbol != can be used. This command is used for determining the
exact subclass of an object.

16. var <variable>==<binExpr> else <label>; – if the condition is true, then control
is transferred to the next command, else control is transferred to <label>. Instead
of equality symbol other (<, <=, >, >=, !=) relational operators compatible with
argument types can be used.

17. attr <pointer>.<attrName> == <binExpr> else <label>; – if the condition is
true, then control is transferred to the next command, else control is transferred
to <label>. Other relational operators (<, <=, >, >=, !=) can be used too.

18. link <pointer1>.<roleName>.<pointer2> else <label>; – checks whether there is
a link (with the type specified by <roleName>) between the objects pointed to by
<pointer1> and <pointer2>, respectively.

19. pointer <pointer1>==<pointer2> else <label>; – checks whether the objects
pointed to by <pointer1> and <pointer2> are identical. Instead of <pointer2>
null constant can be used. The inequality symbol (!=) can be used too.

It is easy to see that the language L0 contains only the very basic facilities for
defining transformations [32].

4.3 Languages L0’ – L3

Language L0’ – model transformation language L0’ is based on the language L0.
The new feature of L0’ is the possibility to make long arithmetic expressions (in L0,
only unary and binary expressions were allowed).
Language L1 – is supplemented with an imperative pattern matching feature, so that
it is possible to search for instances that match some condition. Any L1 pattern can
contain conditions on values of variables or attributes, links between instances and
other. In fact, all L1 commands can be used to specify pattern condition.
The textual syntax for the pattern (such-that block) is as follows:
suchthat
begin
<L1Commands>
end;

The condition holds if it is possible to successfully [27] reach the end of the block
(i.e., successfully execute its last command). The “conditional” commands in L0
(commands that have an else branch) may be used without the else branch in the
such-that block. If in such a command the undefined else branch is to be executed,
then the condition defined by the pattern fails.
The such-that block may be used with first and next commands.
Language L2 – has the possibility to make loops. A special command exists in L2
with which it is possible either to visit all instances of the specified class or just those
instances of the class that match the given pattern. The textual syntax for the loop is
as follows:
foreach <pointerName1> : <className> [from
<pointerName2> by <roleName>] [suchthat
begin

<L2Commands>
end]
do
begin

<L2Commands>
end;

Language L3 – has the branching command – a standard if-then-else construct can be
used. The textual syntax of the branching command is as follows:
if
begin

<L3Commands>
end
then
begin

<L3Commands>
end
[else
begin

<L3Commands>
end];
The L3 metamodel (the Lx language family metamodel) is shown in Fig. 5.

4.4 MOLA and L3

The main reasons why the Lx model transformation language family and the L3
language, particularly, have been chosen are described in this section.

One of the main requirements that must be met is the compatibility of
metamodeling languages. In our case metamodelling languages are EMOF-based for
both MOLA and Lx language family. There are no significant differences between
both languages, but such minor issues like absence of packages in Lx family
metamodeling language can be resolved using name prefixes for class names. Thus,
we can claim that MOLA and Lx metamodeling languages are fully compatible.

Fig. 5. The metamodel of L3 language

It has already been shown [28] that MOLA language can be implemented
efficiently using a set of low-level operations for patterns. There is a direct mapping
from the required operations to the commands of Lx model transformation family.

• initializeGetNext(Class Cl)and getNext(Class Cl)
operations can be mapped to first c:Cl and next c commands. These
commands return all instances of a given meta-class. In the beginning the
first c:Cl command must be called to initialize the iteration through required
instances and afterwards the next c must be called to iterate through.

• initializeGetNextByLink(Association as, Cl1 inst,
Class Cl2) and getNextByLink(Association as, Cl1
inst, Class Cl2) operations can be mapped to the first c:Cl2 from
inst by as and next c commands. These commands return all instances of a
given meta-class navigable by links of the given type from a fixed instance.
The iteration must be done similarly to the previous case.

• checkLink(Cl1 inst1, Cl2 inst2, Association as)
operation can be mapped to the link inst1.as_rolename.inst2 command. The
semantics of this command is the same as the semantics of this operation –
check the existence of a link of the given type between two fixed instances.

• eval(Cl inst, Expr exp) operation is an expression interpreter and
the MOLA realization to L3 must implement a generator of sequences of L3
commands that interprets the given expression. The core elements of such
expressions are attribute or variable value checks. These operations can be
mapped to attr inst.<attrname><relation><expression> and var
<varname><relation><expression> commands accordingly. Arithmetic
expressions can be mapped to expressions introduced by the L0’ language.
Constraints that are complex (Boolean) expressions where conjunction,
disjunction and negation are used can be mapped to a sequence of commands
which interprets the given expression.

MOLA operations that create update and delete instances and links can be mapped
to addObj, addLink, setAttr, deleteObj, deleteLink commands. The control flows
in MOLA can be mapped to label and goto commands in L3 language. L3 language
as well as MOLA has such concepts as procedure, parameter, variable, sub-
procedure call. These concepts can be mapped directly from MOLA to L3 language.
Thus L3 language provides all necessary features that allow us to build an efficient
MOLA compiler.

These basic features are included in the L0’ language, but commands introduced in
the following languages L1-L3 (pattern matching, looping, and branching commands)
allow much easier implementation of the MOLA compiler. That is possible because
these commands are at an abstraction layer much closer to MOLA concepts, such as
for-each loop and rule, than basic, L0 and L0’, commands.

A detailed description of the mapping from MOLA to L3 is given in chapter 6 of
this paper.

5 Architecture of MOLA Compiler

This chapter describes the general architecture of the MOLA compiler. It includes the
chain of compilers from MOLA to L3, L3 to L0, L0 to C++, and C++ to executable
code. An introduction to the model-driven compiling is also included in this chapter.

5.1 Implementation of the Lx Language Family

An efficient compiler has been already built [18] for the Lx language family.
Actually, an efficient realization of the L0 language has been built, and a compiler for
each next language is built using the bootstrapping method [30]. It means that the
previous language in the family is used to build the compiler for the next one (L0 for
L0’ compiler, L0’ for L1 compiler, and so on).

The metamodel-based in-memory repository [31] developed by the UL IMCS has
been chosen to store metamodel and its instances for the implementation of L0
language. This repository has an appropriate low-level API implemented as a C++
function library. Therefore, the intermediate result of the L0 compilation is a C++
program. The final result of the L0 compilation is a dynamic link library (DLL file)
that can be executed over a repository instance which contains the appropriate
metamodel and model and must be loaded into memory. The experiments have shown
that the repository itself and the selected way of compilation to the API [32] are
efficient for the implementation of a model transformation language.

The bootstrapping method used to build compilers for the rest of the Lx family
languages requires that programs written in L0’ to L3 must be stored in the repository
that is used by L0 language. Thus, the metamodel of the L3 language is required. All
other languages of the Lx family are described by the same metamodel because each
next language is derived from the previous one by adding some new features;
therefore, the metamodel of the last language in the chain (L3) also describes all the
previous languages.

The first step in the compilation of an L3 program is to obtain a model – an
instance of the L3 metamodel. It is a representation of the L3 program in the
metamodel-based repository. This step is a separate step in the whole process of the
compilation which requires parsing of the text file and building a model. It is
implemented using a traditional programming language (C++). Obtained lexemes [33,
chapter 3] are stored in the repository as a very simple lexeme model [27]. Next, the
transformation language L0 is used to obtain the L3 program model from the lexeme
model.

When a program model has been built, the actual compilation is being performed.
The L3 (also L2, L1, L0’) compiler actually is a model transformation. In this case, an
in-place transformation is used – the L3 program model is overwritten by the
semantically equivalent L2 program model (also L2 by L1, etc.). The final result of
the chain of compilation steps is an L0 program model which is semantically
equivalent to the initial L3 program given as the input file. The chain of compilation
steps (from L3 to L0) can be treated as one step (the corresponding transformations
are invoked one after another).

The last step in the compilation process is the code generation (a model to text
transformation). An L0 language text file is generated. This step is also carried out

using the L0 language extended with native functions for file handling written in C++.
Actually, only one write to file function is needed.

5.2 MOLA Compiler

Since the whole L3 compilation process has been divided into three separate steps,
there is a possibility to start with any step if the appropriate model has been prepared.
This fact is used by MOLA to L3 compiler – MOLA program is being compiled
directly to an L3 model. This allows to decrease significantly the complexity of the
implementation of MOLA to L3 compiler. Actually, it allows to use transformation
language L3 to build MOLA to L3 compiler.

The first MOLA Transformation Definition Environment (MOLA Editor) [34] was
built on the basis of Generic Modelling Framework [35] – a domain-specific
modelling framework, developed by the UL IMCS together with the company Exigen
Services DATI. The models (MOLA program and metamodel) were stored in a
compatible format to the repository used by the L0 language. Thus, the input for the
MOLA to L3 compiler, a model of a MOLA transformation, already could be
obtained. In fact, no other natural representation of a MOLA program than a model
can be obtained because MOLA is a graphical transformation language. The most
appropriate way to implement MOLA compiler to any suitable language is by using
model transformations. Thus, the first MOLA compiler was implemented using L3
language.

Since the MOLA Editor required more sophisticated features than the GMF domain
specific modelling framework could offer, the next MOLA Editor – MOLA2 Tool –
has been built. MOLA2 Tool uses the METAclipse framework [10], which is based
on Eclipse platform [36] and model transformations. It should be noted that
METAclipse uses the same repository as the L0 realization. Therefore it was possible
to develop transformations for MOLA2 Tool using MOLA itself and the first MOLA
compiler. The second version of MOLA to L3 compiler has been built for MOLA2
Tool, also using L3 language.

Although there are two implementations of MOLA to L3 compiler, there are no
significant differences in the architecture and general ideas of the implementations of
both compilers. The main difference between these two implementations is the
MOLA metamodel. The MOLA metamodel for MOLA2 Tool was improved by
eliminating metamodel restrictions enforced by GMF and making it more suitable for
compilation. The experience and a significant part of the code from the first version of
MOLA to L3 compiler is reused in the second version. This paper is based on the
second version of MOLA to L3 compiler.

Compilation of a MOLA transformation is divided into four steps. Each of them is
performed by a separate component – compiler. These components are:

• MOLA to L3 compiler,
• L3 to L0 compiler,
• L0 to C++,
• C++ to executable file.

The general architecture of MOLA compiler is shown in Fig. 6.

A question may arise – why such a large number of compilers are used? Why do
not use direct compilation from MOLA to C++? The answer is in the low complexity
and reusability of each step. Each compiler transforms a higher-level language to a
lower-level language. It is much easier to build compiler to a language that is at a
closer abstraction level to the source language. Especially it is so if the general
concepts of both languages are similar. This is the reason why L3 (and not L0) is used
as the target language for MOLA. Another issue is the reusability. The compiler of L3
language was already built and this implementation was efficient. The efficiency of
the generated code does not suffer if MOLA compiler is built on top of the compiler
chain. In addition, if we will decide to implement MOLA on another EMOF
compatible repository, for example, EMF [37] or Gralab [38], then only L0 compiler
must be rewritten. Even less, only the actual code generator in L0 compiler must be
rewritten – the lexical and syntax analyzers can be reused. The last compiler (L0 to
code) is dependent on the programming language that implements the API of the
model repository, but for most programming languages it is already built and free, or
open-source versions are available. For example, there are free compilers for Java
[39] and C++ [40]. The only disadvantage of a long compiler chain is longer
compilation time, but it is not a significant problem in areas where transformation
languages are used.

5.3 Model-Driven Compiling

The usage of models and transformation languages in the process of compilation is
not new. The ATL model transformation language [16] has already been used to
compile CPL to SPL [41] and FIACRE to LOTOS [42]. The ATL language itself is
also compiled using a domain-specific language created only for this purpose – ACG
(ATL Code Generation language) [43]. All of these are textual languages and the
model-to-model transformation is used for actual compilation similarly to the way it
was used in the example of the L3 to L0 compilation [27]. A similar idea is also used
in the SmartQVT [15] implementation. The QVT code is parsed to obtain the model
representation of a QVT transformation, and the actual compilation to the Java file is
performed using this model.

A similar pattern of compilation is used in all examples. Three basic steps are
performed:

• parse an input program and obtain the model of it,

MOLAMOLA L3L3 L0L0 L0L0 C++C++

DLLDLL

MOLA
MM
MOLA
MM

L3
MM

L0
MM

L3
MM

L0
MM

L0
MM
L0
MM

Fig. 6. The general architecture of MOLA compiler

• compile the model of the input program to the model of an output program,
• generate the code of the output program from the model.

This approach may be called model-driven compiling – models are used as core

elements of the compilation process (see Fig. 7).

These steps are similar to the phases of compilation in the traditional compilation
technique [33, chapter 1]. The lexical and syntactical analyses are performed by the
parser. The semantic analysis, intermediate code generation (target program model),
and optimization are performed by compiler (model transformation). The code
generation is done in the last step. The model of a source program is stored according
to the language metamodel. Actually, the parse trees used in the traditional
compilation technique can be treated as sort of models. Thus, the similarity is
obvious.

All three steps of the model-driven compiling require appropriate metamodels
already built for both input and output languages and transformation written using a
model transformation language suitable for the compilation tasks. Actually, text-to-
model (T2M), model-to-model (M2M), and model-to-text (M2T) languages are
needed. An exporter or importer written in the general purpose programming
language can be used instead of the T2M and M2T transformations. Certainly, the
choice of the programming language depends on the repository used to store models.

The model-driven compiling is even more appropriate for graphical languages such
as MOLA. Since programs of graphical languages are stored as models, the first step
can be omitted – the model-to-model transformation that implements a compiler can
be applied directly.
The main advantages of using model-driven compiling:

• The higher level of abstraction that is provided by model transformation
languages allows reducing the complexity of compiler implementation.

• This is the most appropriate way to compile graphical languages because
they are mostly implemented using some metamodel [37] or graph-based

Lang1Lang1 Lang2Lang2

Lang1
MM
Lang1
MM

Lang2
MM
Lang2
MM

Lang2Lang2Lang1Lang1

Fig. 7. Model-driven compiling – general architecture

[38] repository. Actually, programs (diagrams) of such languages are models
and the usage of a model transformation language is the most natural
approach.

• If the concrete syntax of the input language is based on some general
“coding” language, like XML [44], then model transformations can be
applied to obtain the model of the program from its “coding”. In this case, a
standard parser can be used to obtain the model of the “coding”. Next, the
model transformation can be used to obtain the model conforming to the
input language metamodel. A similar approach is also applicable for the
output language.

• Since attribute grammars have been used to specify the semantics of
programming languages [45], a precise definition of the model
transformation between source language and target languages can be used to
define the semantics of the source language in even more readable way.

The first experience in using model-driven compiling was quite promising. The
MOLA to L3 and L3 to L0 [27] compilers have been developed. The implementation
of both compilers has shown that using transformation language for compilation tasks
reduces the complexity of the implementation. However, the best practice of model-
driven compiling has yet to be developed, and comparison to the traditional
compilation techniques [33] must be drawn.

6 Mapping from MOLA to L3

This chapter contains detailed description of the mapping from MOLA to L3. That
includes mapping of metamodeling language constructs and mapping of MOLA
procedure and its elements to constructs of the L3 language.

6.1 Mapping of Metamodelling Languages

Both MOLA metamodelling language and the Lx family metamodelling language are
based on EMOF. So the mapping is straightforward. For the description of this
mapping, we will use the meta-class names from MOLA and Lx family
metamodelling language metamodels shown in Fig. 2 and Fig. 4. The MOLA related
meta-class names are prefixed by the Kernel prefix, but the Lx related meta-class
names are prefixed by the Lx prefix.

• Each Kernel::Class instance is transformed to Lx::Class with the same
name, but since there are no packages in Lx, the Lx::Class name is prefixed
by all parent package names. For example, the Kernel::Class “Lifeline”,
which is owned by the package “Interactions”, which is in package “UML”,
is transformed to Lx::Class named “UML::Interactions::Lifeline”

• Both languages have pre-defined primitive types. All the primitive types that
are in MOLA – String, Integer, Boolean – are also in Lx.

• Each Kernel::Enumeration instance is transformed to Lx::Enumeration
instance and each Kernel::EnumerationLiteral instance is transformed to
Lx::EnumerationLiteral instance owned by the appropriate enumeration.

• Each Kernel::Generalization instance is transformed to Lx::Generalization
instance. Of course, general and specific links are set to the appropriate
classes. This implementation of the L0 does not allow multiple
generalization; thus, it cannot be used in MOLA either.

• Each Kernel::Association instance is transformed to Lx::Association, and
appropriate association ends that are represented as Kernel::Property
instances linked by memberEnd link to the association are transformed to
Lx::AssociationEnd instances. They are linked to the appropriate class
instances. Multiplicity, ordering and composition information of association
ends are also transformed directly to Lx.

• Each Kernel::Property instance that is an attribute is transformed to an
Lx::Attribute instance. Since MOLA allows only primitive or enumeration-
typed attributes, the correspondence is direct.

An example of the transformation is given in Fig. 8.

class Kernel::Classifier;
class Kernel::Class;
class Kernel::Property;
enum VisibilityKind : {public,private,package};

 compos Kernel::Class.[0..1]class/ownedAttribute[*].Kernel::Property;
attr Kernel::Classifier.isAbstract:Boolean;
attr Kernel::Property.isDerived:Boolean;
attr Kernel::Property.isReadOnly:Boolean;
attr Kernel::Property.AggregationKind:AggregationKind;
attr Kernel::Property.VisibilityKind:VisibilityKind;
rel Kernel::Class.subClassOf.Kernel::Classifier;

Fig. 8. An example of MOLA to Lx metamodelling language

6.2 Mapping of the Procedure Headers

MOLA procedures form the executable part of a MOLA transformation. The L3
language also has procedures. Both MOLA and L3 procedures may have parameters
that may be in (passed by value) or in-out (passed by reference). Both languages may
have variables declared. In L3, the class-typed variables and parameters are called
pointers and have a different syntax, so compiler must distinguish class-typed
variables from enumeration and primitive-typed variables. Each non-reference class-

element that is used in rules in a MOLA procedure is transformed to a pointer
declaration. Actually, the transformation of procedure header is straightforward and
does not need detailed description. An example of the transformation of a MOLA
procedure header is shown in Fig. 9 (the L3 code in all examples is used to better
illustrate the result of compilation. Actually, the compiler produces instances of the
model of an L3 program)

main procedure ExampleProcedure(Param:String,
Param1:&Interactions::Lifeline
);

var Var:Enumeration1;
pointer Var1:Interations::Message;
pointer ClElem:Interactions::Message;

Fig. 9. Procedure header to L3

6.3 Mapping of the Execution Control Flows

The basic statements of MOLA are rule and for-each loop. There also are other
MOLA statements – text-statement, call-statement, etc. Control flows are used to
determine the order of execution of MOLA statements within one MOLA procedure.

There is exactly one start-statement in a MOLA procedure. It defines the entry
point of the MOLA procedure. Other statements may pass the execution control to
another statement or terminate the execution of the procedure. End-statements are
used to terminate the execution of the procedure. They define the exit points of the
MOLA procedure. The execution of the procedure may also be terminated by a text-

statement or a rule if the corresponding control flow is not present. Actually, a text-
statement and a rule are used as traditional branching constructs (they may have two
outgoing control flows, one of them labelled ELSE). A for-each loop contains nested
MOLA statements (loop-body) that are executed during each iteration. It has a special
statement – loop header (rule-based loophead), which defines the entry point to the
loop-body. There may be any other MOLA statement in the loop (except start-
statement) – nested loops are also allowed. A statement that has no outgoing control
flow terminates the current iteration of the loop. A branching statement may also
terminate the current iteration of the loop if one of outgoing control flows is not
present. Other statements (call-statement, etc) just pass the execution control to the
next statement. Control flows in MOLA procedure may connect statements in an
almost arbitrary way, there are only few restrictions. Incoming control flows are not
allowed to the start-statement and loophead. Outgoing control flows are not allowed
from end-statements. It is not allowed to “jump” into a loop from an outside statement
either (it is allowed to “jump” out).

Control flows and MOLA statements form a directed graph, where some nodes
(loops) may contain a nested graph. This graph is the control flow graph (CFG) of a
MOLA procedure. The control flow graph is a data structure used by traditional
compilers for analysis and optimization of program execution [33, chapter 10].

The most natural way to code the control flow graph in a textual language is to use
a labelled block of code for every node and a “jump” command for every edge. Thus
each node of the MOLA control flow graph will compile to the block of L3 code. The
block of code must start with a label command that unambiguously identifies the
block. The execution control is passed to another code block using a goto command.
If the execution of the MOLA procedure must be terminated, then a return command
is used.
According to the different types of statements described above, we can distinguish
five types of nodes in the control flow graph of the MOLA procedure and define the
mapping to L3 language for these types:

• Entry node (start-statement) is a unique and mandatory node. Here we do a
little optimization – no L3 code block is created for start-statement. The
outgoing control flow determines the first MOLA statement that in turn
determines the first code block of the procedure.

• Exit node (end-element) is compiled to the following code block (in what
follows, a simple template language is used – L3 keywords are bolded, other
parts of code are shown in angular braces containing an intuitive
description):

label <label name>;
return;

• Simple node (call-statement) may not have an outgoing ELSE control flow.
It is compiled to a simple code block – a sequence of commands depending
on the actual type of MOLA statement and the goto command to the label
command of the code block that is created from the MOLA statement
connected by the outgoing control flow.

label <label name>;
<sequence of commands>;
goto <next label name>;

• Branching node (rule, text-statement) may have two outgoing control flows,
where one of them may be an ELSE control flow. It is compiled to an if-
then-else command. The if-block contains the condition, then-block contains
the action part of the MOLA rule or text-statement and else-block contains a
goto command to the label command of the code block that is created from
the MOLA statement connected by the outgoing ELSE control flow. The last
command in the main code block is the goto command to the label command
of the code block that is created from the MOLA statement connected by the
other (non-ELSE) outgoing control flow.

label <label name>;
if

begin
<condition commands>;

end
then

begin
<action commands>;

end
else

begin
goto <next else label name>;

end;
goto <next label name>;

label <label name>;
foreach <loop variable name> suchthat

begin
<loophead condition commands>;

end
do

begin
label <loophead label name>;
<loophead action commands>;
goto <loophead next label name>;
label <loop iteration end label name>;

end
goto <next label name>;

• Loop node (for-each loop) contains a nested control flow graph. Since a loop
and its loophead can not be used separately, a common L3 code block is
created for both nodes. A loop is compiled to a foreach command. The
such-that block contains the condition, the do block contains the action part
of the loophead. The do block also contains a goto command to the label
command of the code block that is created from the MOLA statement
connected by the outgoing from the loophead control flow. The last
command in the do block is a label command. This label is used to receive
back the execution control from the code blocks that terminate an iteration of
the loop. Thus, a MOLA statement which terminates the execution of the
current iteration of the loop passes the execution control to this label
command instead of terminating the execution of the whole procedure. In
fact, the execution control is passed away from the do block of a foreach
command, but it is received back just at the end of an iteration. Thus, the
code blocks that are created from MOLA statements within the loop body
are included in the corresponding L3 loop body indirectly – using goto and
label commands. The last command in the main code block is a goto
command to the label command of the code block that is created from the
MOLA statement connected by the outgoing control flow of the loop.

The complete code of the procedure is assembled using code blocks obtained in the
way just described. The first code block is determined by the start-statement. All
other code blocks may be added to the procedure in an arbitrary order because the
order of execution is determined only by label and goto commands – not by the order
in which command blocks are added to the procedure.
The result will be likely a sort of “spaghetti code” [46], but this causes no danger
because the L3 code is just an intermediate code which is compiled further. This code
is not read by a transformation developer. The wide usage of the goto commands does
not cause any loss in the overall performance.

6.4 Mapping of MOLA Statements

The control structure aspect of the mapping of MOLA statements to L3 commands
has already been described in the previous section. This section contains a detailed
description of the mapping for each MOLA statement including data processing and
pattern matching aspects.
The mapping for start and end statements has already been described. The start-
statement is used to determine the first MOLA statement and end-statement is
transformed to the return command.

6.4.1 Call-Statement

The call-statement is transformed to the call command. Since the mapping from a
MOLA procedure to L3 procedure is one-to-one, the called L3 procedure is the same
that is mapped from the MOLA procedure called by the MOLA call-statement. The
L3 language allows only binary expressions to be used as actual parameters of the call
command. MOLA allows arbitrary expressions (of appropriate type) to be used as
actual parameters (the same problem is for calling functions in an expression). Our

solution is to use temporary variables or pointers (depending on the actual type of a
parameter) and setVar or setPointer commands to calculate the values of
expressions. These commands must be executed before the call command. If the
actual parameter is a MOLA variable, parameter, or class element identifier, then a
temporary variable is not used. An example of the compilation is shown in Fig. 10.

var temp_var1:String;
var temp_var2:Integer;
begin
…
label id_lab1;
setVar temp_var1=”constant”;
setVar temp_var2=564+c.intAttr:Integer;
call test(a,temp_var1,temp_var2);
goto id_labx;
…

Fig. 10. The compilation of the call-statement

6.4.2 Text-Statement

As it was described before, the text-statement is transformed to the if-then-else
command. MOLA text-statement has two main parts – a condition (constraint), which
is expressed using OCL-style expression, and a list of assignments. The condition
holds if the expression evaluates to true. The condition is compiled to the if block of
the if-then-else command. Assignments are compiled to the then block of the if-then-
else command.

Assignments are used in the text statement to assign values to elementary variables
and pointers. The L3 commands that are used for this task are setVar and setPointer.
In MOLA the value that is being assigned is expressed using a simple expression of
an appropriate type. A simple expression of Integer type may contain Integer-typed
variable, parameter or attribute specifications, Integer constants, pre-defined
functions (size, indexOf, toInteger) and arithmetic operations (addition, subtraction,
multiplication). A simple expression of String type may contain String-typed variable,
parameter or attribute specifications, String constants, pre-defined functions
(toLower, toUpper, substring, toString), and a concatenation operation. A simple
expression of Boolean type may contain Boolean-typed variable, parameter or
attribute specifications, Boolean constants (true and false), or pre-defined function
(isTypeOf, isKindOf, toBoolean). A simple expression of enumeration type may
contain enumeration-typed variable, parameter or attribute specification, enumeration
literals or a pre-defined function toEnum. A simple expression of class type may
contain a class-typed variable or parameter specification (pointer), null constant or
typecast.

In L3 similar expressions are allowed, but there are a few differences: there is no
direct typecast of a pointer, actual parameters in a function call may be only a binary
expression of an appropriate type. The list of pre-defined functions in L3 does not
match all the pre-defined functions of the MOLA language either. The solutions to

these problems are rather simple. In addition, some kinds of expressions in L3 allow
more features than in MOLA, but these features are not relevant for MOLA compiler.
The complete table of correspondence is shown in Table 1.

Table 1. Correspondence of elements used in expressions in MOLA and L3

MOLA L3

String, Integer, Boolean, enumeration-
typed constants, NULL constant +

elementary variables, pointers +
attribute specification +
+,-,*,concatenation +
direct typecast (class-typed) temporary variable and extra

setPointer command used
function call temporary variables and extra

setVar commands for complex
parameters used

pre-defined functions extended library of native functions
used

toEnum, toInteger, toString, toBoolean +
indexOf, toLower, toUpper extended library used
size, substring +
isTypeOf, isKindOf temporary variable and type

command used
The left column describes features used in MOLA expressions and the right column
shows the correspondence in L3. The plus sign (+) means that the mapping is direct.
If there is no direct mapping, the basic principles of a solution are shown. It may be
the usage of a temporary variable (typecast and function call) or the usage of an
extended library of native functions (indexOf, toLower, toUpper functions).

Though L3 expressions allow Boolean operations, they cannot be used with
relations. Relational operators (<, >, etc) may be used only in var and pointer
commands. That makes the compilation of Boolean expressions used in MOLA more
difficult.

In MOLA the simplest condition is a simple expression of the Boolean type. Then it
is compiled using a temporary variable and a var command in the following way:

Condition:

<simple boolean
expression>

if
begin

[<extra commands>]
setVar temp_var=<simple boolean expression>;
var temp_var==true;

end
…

Usually a condition also contains a relation (>, <, >=, <=, =, <> operators can be
used). Since the left and the right operands may be arbitrary expressions of the same
type, the value of each expression is computed and stored in a temporary variable.
Then these variables are compared using a var or pointer command depending on the
type of expressions.

Condition:

<expression1><relation>
<expression2>

if
begin

[<extra commands>]
setVar/setPointer temp_var1=<expression1>;
[<extra commands>]
setVar/setPointer temp_var2=<expression2>;
var/pointer temp_var1<relation>temp_var2;

end
...

A condition in MOLA may also contain Boolean operations – conjunction (and),
disjunction (or), and negation (not) – together with relational operators. The L3 has
no such features, but it is shown [18, chapter 4] that it is possible to construct L3 code
that implements the Boolean operations. The algorithm implemented in MOLA to L3
compiler uses the same principles.

Our template language will be used to explain this algorithm. An extension of the
template language is required – let us define a function
PrintBooleanExpression(variable_name,boolexpression) that returns the block of L3
code that calculates the value of the Boolean expression boolexpression and stores it
in the variable whose name is passed by the parameter variable_name. The use of this
function means that the code block returned by the function replaces the function call.
We will also need an auxiliary procedure CreateBooleanVariable(varname), which
adds the declaration of a new Boolean variable whose name is passed by the
parameter varname. Variable and label names having a prefix unique are considered
to be unique within the procedure.

If the parameter boolexpression is a simple expression of type Boolean or a
relation, then the function PrintBooleanExpression will return the following code:

boolexpression=<simple
boolean expression>

[<extra commands>]
setVar variable_name =<simple boolean expression>;

boolexpression=
<expression1><relation><expr
ession2>

setVar variable_name =false;
[<extra commands>]
setVar unique_temp_var1=<expression1>;
[<extra commands>]
setVar unique_temp_var2=<expression2>;
var unique_temp_var1<relation> unique_temp_var2 else
unique_label;
setVar variable_name =true;
label unique_label;

If the parameter boolexpression contains Boolean operators and, or, not, then the
function will return the following code

boolexpression=
boolexpression1 or
boolexpression2

CreateBooleanVariable (“unique_temp_var1”)
CreateBooleanVariable (“unique_temp_var2”)
PrintBooleanExpression(“unique_temp_var1”, boolexpression1)
PrintBooleanExpression(“unique_temp_var2”, boolexpression2)
setVar variable_name=true;
var unique_temp_var1==false else unique_label;
var unique_temp_var2==false else unique_label;
setVar variable_name=false;
label unique_label;

boolexpression=
boolexpression1 and
boolexpression2

CreateBooleanVariable (“unique_temp_var1”)
CreateBooleanVariable (“unique_temp_var2”)
PrintBooleanExpression(“unique_temp_var1”, boolexpression1)
PrintBooleanExpression(“unique_temp_var2”, boolexpression2)
setVar variable_name=false;
var unique_temp_var1==true else unique_label;
var unique_temp_var2==true else unique_label;
setVar variable_name=true;
label unique_label;

boolexpression= not
boolexpression1

CreateBooleanVariable (“unique_temp_var1”)
PrintBooleanExpression(“unique_temp_var1”, boolexpression1)
setVar variable_name=true;
var unique_temp_var1==true else unique_label;
setVar variable_name=false;
label unique_label;

An example of the compilation of a MOLA text-statement is shown in picture Fig. 11.
if begin

setVar _mvar_6=false;
setVar _mvar_9=s;
setVar _mvar_10="Star";
var _mvar_9==_mvar_10 else
_mlabel_8;
setVar _mvar_6=true;
label _mlabel_8;
setVar _mvar_7=false;
setVar _mvar_12=par;
setVar _mvar_13=0;
var _mvar_12>_mvar_13 else
_mlabel_11;
setVar _mvar_7=true;
label _mlabel_11;
setVar _mvar_4=false;
var _mvar_6==true else _mlabel_5;
var _mvar_7==true else _mlabel_5;
setVar _mvar_4=true;

label _mlabel_5;
var _mvar_4==true;

end then begin
setVar _mvar_14= c.name:String
+"Star";
setVar s= toUpper(_mvar_14);
setVar par= Length(s)+1;

end else begin
return;

end;

Fig. 11. The compilation of the text-statement

6.4.3 Rule

Another, and the most important, decision statement in MOLA is a rule. It is also
compiled to the if-then-else command. The condition of the rule is expressed using a
pattern. The implementation of pattern matching typically is the most demanding
component to implement and also the key factor determining the implementation
efficiency. The efficiency of the implementation of the pattern matching is not the
central theme of this paper. The chosen realization of the pattern matching
implements some ideas that have been already described in [28]. This approach
guarantees sufficient efficiency of the pattern matching for typical MOLA use cases.

The basic elements of the pattern are class-elements and association-links. A class-
element represents the instance of the particular class. There are several types of
class-elements, but only normal and delete class-elements are used to specify a
pattern. Let us call them pattern elements. In addition, only normal and delete
association-links are used to specify a pattern. Let us call them pattern links. Pattern
elements and pattern links form the pattern graph. Pattern elements that are linked by
pattern links form the pattern fragment (connected component of the pattern graph).
A pattern may contain several pattern fragments that can be treated as separate
patterns. All pattern fragments must match for the whole pattern to match. The main
goal of the pattern matching is to find particular instances that match the given
pattern. The sought instances are represented by non-reference pattern elements. The
pattern links, reference class elements, and constraints on class elements form the
pattern constraint. Actually, such a set of instances is sought that matches the pattern
constraint.

The pattern is compiled to a block of L3 code which is placed in the if block of the
if-then-else command. Several pattern fragments are compiled to separate L3 code
blocks following each other. Natural constructs in L3 language that implement
patterns are first-suchthat and first-from-by-suchthat commands. A pattern
fragment is thus compiled to a nested first-suchthat or first-from-by-suchthat
command.

To achieve this goal, the pattern graph must be traversed and appropriate
commands built. The classical graph traversing techniques are used – a recursive
algorithm that marks already traversed nodes and edges [47].

The first task is to decide which pattern element will be processed first – let us call
it a root node. This is an important task because this decision affects the overall
performance of the pattern matching. The main idea is to reduce the number of
instances that must be examined to match or fail the pattern. If the pattern fragment
contains a reference element, then the traversing of the pattern graph must be started
from this element. This version of MOLA language also allows to denote the root
element manually, using special compiler-related annotations.

The algorithm starts the processing of the graph with the root node:
• root node – is marked as traversed.

o If it is a non-referenced class-element, then the first-suchthat
command is created. The such-that command block of the
command is selected as the current command block. L3 commands
that are obtained from the local constraint of the class-element are
placed in the such-that block of the created command.

o If it is a referenced class element, then L3 commands that are
obtained from the local constraint of the class element are placed in
the if block of the if-then-else command.

o All nodes connected by adjacent edges (pattern links that have not
yet been traversed) are processed.

• Other (non-root) nodes are processed in the following way – the edge which
is used to reach this node is marked as traversed.

o If the node has been already traversed, then a link command is
added to the current command block.

o If the node has not been traversed, then it is marked as traversed.
 If it is a reference class-element, then a link command is

added to the current command block. L3 commands that
are obtained from the local constraint of the class element
are placed in the if block of the if-then-else command.

 If it is a non-reference class-element, then the first-from-
by-suchthat command is added to the current command
block. The such-that command block of the this command
is selected as the current command block. L3 commands
that are obtained from the local constraint of the class
element are placed in the such-that block of the created
command.

 All nodes connected by adjacent edges that have not yet
been traversed are processed.

The local constraints of pattern elements are processed in the same way as the
condition of the text-statement.
An example of the compilation of a pattern is given in Fig. 12.

if begin
first p:Kernel::Property from c
by ownedAttribute suchthat
begin

setVar _mvar3=p.name:String;
setVar _mvar4=”value”;
var _mvar3==_mvar4;
first t:Kernel::Type from p by
type;

end;
end
then
….

Fig. 12. The compilation of the rule-pattern
Actually, the algorithm described above realizes the principles of MOLA Virtual

Machine described in [28]. This algorithm builds an efficient L3 code if MOLA
language constructs are used in a natural way. The practical usage of MOLA compiler
has also shown that the natural use of MOLA constructs leads to an efficient pattern
matching. Thus, the current implementation is sufficient enough for typical tasks
(MDA, tool building). However, the algorithm can be enhanced in order to achieve a
better performance in less typical situations. For example, if the pattern does not
contain a reference pattern-element or annotated pattern-element, then a more detailed
analysis of the pattern graph should be performed. The multiplicities of the
associations that correspond to the association-links used in the pattern could be
analyzed. The direction of traversing the graph should be chosen so that the “going”
along an association in the direction of ‘*’ multiplicity is minimized. More
complicated algorithms for the pattern matching have been used typically in rule-
based transformation languages, for example, VIATRA [48]. This problem (the
pattern matching efficiency) is not the main topic of this paper; therefore, it is not
discussed in-depth.

The action part of a rule consists of class-elements, association links, and attribute
assignments that are included in class elements. The create and delete class-elements
are used to create and delete particular instances. The create and delete association-
links are used to create and delete links. The assignment is used to assign the value of
the attribute of a particular instance. The value is specified by using expressions that
have been already described in previous sections. The correspondence between
MOLA and L3 constructs is shown in Table 2.

Table 2. Correspondence of constructions used in the action part of the rule

MOLA L3

create, delete class-elements addObj, deleteObj commands
create, delete association-links addLink, deleteLink commands
attribute value assignments setAttr commands

The L3 code that is created for the action part of the rule is placed in the then block
of the if-then-else command. An example of the compilation of the action part of a
rule is shown in Fig. 13.

If begin …end
then begin

addObj pr:Kernel::Property;
addLink pr.type.c;
setAttr c.name="Student";
setAttr pr.name="attendant";
deleteLink
c.owningPackage.pack;
deleteObj pack;

end else
…

Fig. 13. The compilation of the rule – action part

6.4.4 For-each loop

The last MOLA statement described in this chapter is the for-each loop. The
implementation of a loop is one of the crucial issues in the implementation of the
MOLA compiler. An incorrectly chosen search structure may cause serious efficiency
problems.

The condition of a loop is expressed by using the pattern of the loophead, which
contains a special class-element – the loop variable. The iteration is performed over
all instances that correspond to the loop variable.

The loop is compiled to the foreach command. The condition of the loop is
compiled to the such-that block of the foreach command. The compilation of the
loophead pattern is similar to the compilation of the rule pattern. The pattern match
starts from the loop variable (it is chosen as the root node). Usually there is a
restriction-path – a path from a referenced class element to the loop variable where
all multiplicities of the corresponding associations are ‘0..1’ or ‘1’. Then for this path,
first-from-suchthat commands are created and added to the code block before the
foreach command. The loop variable is used as the loop variable in the foreach
command. All nodes and edges that have been already processed (appropriate
commands built for the loop variable and class-elements in the restriction path) are
marked traversed, and the algorithm used for the compilation of a rule is executed.

This algorithm is not the most optimal either, but it is suitable for most of typical
examples – usually there is a restriction path. Further optimization of the algorithm is
not addressed in this paper.

The action part of the loophead is compiled in the same way as the action part of a
rule. The created code is added to the do block of the foreach command. Fig. 14
illustrates an example of the compilation of a loop.

foreach p:Kernel::Property from c
by ownedAttribute suchthat
begin

first type:Class from p by
type;

end do begin
setAttr p.name=c.name:String
+ type.name:String;
goto _mlabel_10;
label _mlabel_9;

end;
goto _mlabel_23;
...
label _mlabel_10;
call test(type);
goto _mlabel_9;
...

Fig. 14. The compilation of the loop

The mapping of the most important MOLA constructs to L3 has been defined in this
chapter.

7 The surrounding of the MOLA compiler

This chapter introduces the problems that have been discovered during the
implementation of the MOLA compiler. The compiler is the most important part of
the implementation of a programming or transformation language. However, there are
other parts needed in a proper development environment.

7.1 Error handling in MOLA

The compiler detects syntax errors in a program. Usually a development environment
of a textual programming language provides the possibility to navigate to errors in a
code. A list of errors is shown and the appropriate “problematic” line of code is
highlighted. Similar requirements can also be applied to the MOLA development
environment. Since MOLA is a graphical language, there are no “lines of code”, as it
is in textual languages. Each element that has a visual representation (MOLA
statement, class-element, etc) can be treated as a “line of code”. The MOLA compiler
must detect errors in a program and point to the appropriate element. Actually,
MOLA compiler does not “know” anything about the visual representation of a

MOLA element. Thus, the visualization of an error is done by the development
environment.

Our solution is to store the error information in the error model. The error
metamodel is very simple (see Fig. 15).

Fig. 15. The error metamodel

In fact, there is only one class (ErrorMessage). It represents a particular error. There
are two attributes – the attribute text contains the textual information and type
determines whether it is a warning or an error. The association element represents an
“error pointer” to the appropriate element in a MOLA transformation (any MOLA
element inherits from the Kernel::Element, see Fig. 3). The MOLA compiler deletes
the existing error model and creates a new one in the process of compilation. The
MOLA2 Tool reads the error model and visualizes it. An example of the error
visualization is shown in Fig. 16.
The list of errors is shown in the properties tab. It is possible to navigate to the
corresponding MOLA procedure from there. The elements pointed by the compiler
are highlighted. This is an adequate way to treat the error handling problem in a
graphical language.

Fig. 16. The visualization of errors in a MOLA procedure.

7.2 Structuring a program in MOLA

Another feature provided by modern development environments is the possibility to
compile only part of the code if the whole program has already been compiled. This is
needed for large programs, when a compilation takes a significant amount of time. To
achieve this goal, the program has to be structured. The most common approach is to
use code units. Each unit is compiled to a separate object. Next, a linker is used to
obtain a single executable.

A similar idea is also used in the MOLA2 Tool. Packages are used to structure a
MOLA program. A package may be defined as a MOLA unit. It means that all MOLA
procedures that are contained by the unit are compiled to a separate L0 unit. This
allows using L0 compiler as a linker that assembles all L0 units into one C++ project.
Thus, model transformations (MOLA and L3-L0’compilers) can work with smaller
models that helps to improve the overall performance of the compilation process.

7.3 Debugging in MOLA

If a program is successfully compiled, it means that it is syntactically correct, but it
does not mean that the program is semantically correct. Testing is a common
approach used by a program developer. If a bug is found, then it must be fixed. This
process is called debugging. The debugging process requires a tool support to ease
this process. Tools used for debugging are called debuggers.

Typically, debuggers offer functions such as running a program step by step and
pausing the program to examine the current state of the program to track the values of
some variables. Some debuggers have the ability to modify the state of the program
while it is running. The importance of a good debugger is very high. The existence of
such a tool can often be the deciding factor in the use of a language, even if another
language is more suited to the task.

However, a debugger for the MOLA2 Tool has not yet been developed. There are
examples of a debugger of a graphical language, for example, the UML Model
Debugger [49]. There are differences between the debugger of a textual language and
the debugger of a graphical language. The main difference is in the representation of
the single-stepping approach. Since graphical languages are usually represented in
diagrams, an animation of the program execution is required. Other representations
could also be used, but they would be rather far from the concepts of the language.

An interpreter or instrumentation by an additional code in the compilation result
may be used for the debugging purposes. The execution of a single MOLA statement
could be considered as one step in the step-by-step debugging process. The result of
the compilation of a MOLA program is L3 code. Since this code consists of code
blocks that correspond to one MOLA statement, these blocks could be supplemented
with a debugging code in a rather simple way.

There is another widely used but not so sophisticated way of the debugging. The
trace (log) files can be used to trace the execution of a program. The current version
of the MOLA compiler uses the L0 debugging feature – the L0 trace file. It logs an
execution of every L0 command. However, the L0 tracing operates with L0 concepts.
Therefore, a tracing that is at a closer abstraction level to the MOLA is needed.

8 Conclusions and Future Work

A sufficiently efficient implementation of the MOLA to L3 compiler has been
described in this paper. The MOLA compiler has already been used practically in the
area of tool building. The transformations that are used for implementation of the
MOLA2 Tool within the METAclipse framework are developed using the MOLA to
L3 compiler. The MOLA2 Tool that includes the second version of the MOLA
compiler is successfully being used in the European IST 6th framework project
ReDSeeDS [50]. Traditional MDA tasks are being implemented in MOLA there.
These tasks include transformations from formalized software requirements to an
architecture model of the system to be built and then to a detailed design model. Thus,
the efficiency of the chosen architecture has been approved by practical usage. In both
cases, non-trivial MOLA transformations have been developed and applied to
sufficiently large models.

On the one hand, the future work is related to the problems discussed in chapter 7.
The practical usage of MOLA has shown that the problem of debugging is quite
significant. It should be noted that building both a user-friendly and sufficiently high-
level debugger for model transformation languages, especially for graphical ones, is
quite a challenging task. On the other hand, improvements in the implementation of
the MOLA compiler are also expected – a more advanced algorithm of pattern
matching for MOLA will be developed. These improvements should ensure more
efficient execution for less typical MOLA transformations. In addition, the model-
driven compiling briefly sketched in this paper also deserves a more detailed research.

References

1. Volter M. and Stahl T., Model-Driven Software Development. John Wiley & Sons,
2006.

2. A.G. Kleppe, J.B. Warmer, & W. Bast, MDA explained: The model driven
architecture: Practice and promise (Boston: Addison-Wesley, 2003)

3. The Object Management Group (OMG) URL: http://www.omg.org/
4. OMG Model-Driven Architecture URL: http://www.omg.org/mda/
5. Meta Object Facility (MOF) 2.0 Core Specification URL:

http://www.omg.org/docs/ptc/04-10-15.pdf
6. OCL 2.0 Specification Version 2.0 URL: http://www.omg.org/docs/ptc/05-06-06.pdf
7. OMG Unified Modelling Language (UML), version 2.1.1 URL: http://www.omg.org/

technology/documents/formal/uml.htm
8. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification URL:

http://www.omg.org/docs/ptc/07-07-07.pdf
9. Metamodel and UML Profile for Java and EJB Specification URL:

http://www.omg.org/docs/formal/04-02-02.pdf
10. Kalnins, A., Vilitis, O., Celms, E., Kalnina, E., Sostaks, A., Barzdins, J.: Building

Tools by Model Transformations in Eclipse. Proceedings of DSM’07 workshop of
OOPSLA 2007, Montreal, Canada, Jyvaskyla University Printing House, 2007, pp.
194–207.

11. I. Rath, D. Varro. Challenges for advanced domain-specific modelling frameworks.
Proc. of Workshop on Domain-Specific Program Development (DSPD), ECOOP
2006, France.

12. Ermel, C., Ehrig, K., Taentzer, G., Weiss, E.: Object Oriented and Rule-based Design
of Visual Languages Using Tiger. Proceedings of GraBaTs'06, 2006, pp. 12

13. Request for Proposal: MOF 2.0 Query / Views / Transformations RFP URL:
http://www.omg.org/docs/ad/02-04-10.pdf

14. ikv++ - mediniQVT URL: http://www.ikv.de/index.php?
option=com_content&task=view&id=75&Itemid=77

15. SmartQVT URL: http://smartqvt.elibel.tm.fr/index.html
16. ATL. URL: http://www.eclipse.org/m2m/atl/
17. VIATRA2 URL: http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/

VIATRA2/index.html
18. J. Barzdins, A. Kalnins, E. Rencis, S. Rikacovs, Model Transformation Languages

and Their Implementation by Bootstrapping Method, Pillars of Computer Science:
Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday,
Arnon Avron, Nachum Dershowitz, and Alexander Rabinovich, editors, Lecture
Notes in Computer Science, vol. 4800, Springer-Verlag, Berlin, 2008.

19. T. Fischer, J. Niere, L. Torunski, and A. Zundorf. Story diagrams: A new graph
rewrite language based on the Unified Modelling Language. In G. Engels and G.
Rozenberg, editors, Proc. of the 6th International Workshop on Theory and
Application of Graph Transformation, volume 1764 of LNCS, pages 296–309.
Springer Verlag, 1998.

20. Agrawal A., Karsai G., Shi F. Graph Transformations on Domain-Specific Models.
Technical report, Institute for Software Integrated Systems, Vanderbilt University,
ISIS-03-403, 2003

21. Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA.
Proceedings of MDAFA 2004, Vol. 3599, Springer LNCS, 2005, pp. 62–76.

22. C. Ermel, M. Rudolf, and G. Taentzer. The AGG Approach: Language and Tool
Environment. In H. Ehrig, G. Engels, H. J. Kreowski, and G. Rozenberg, editors.
Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 2:
Applications, Languages and Tools, pages 551–603. World Scientific, 1999

23. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and
environment. In Ehrig, H., Engels, G.,Kreowski, H.J., Rozenberg, G., eds.: Handbook
on Graph Grammars and Computing by Graph Transformation: Application,
Languages, and Tools. Volume 2. World Scientific (1999) pp. 487–550

24. F. Jouault and J. Bézivin. KM3: a DSL for Metamodel Specification. In Procs.
FMOOD’06, volume 4037 of LNCS, pages 17–185

25. Balogh, A., Varro, D. Advanced Model Transformation Language Constructs in the
VIATRA2 Framework, ACM SAC2006, Dijon, France, 2006

26. ATL: Atlas Transformation Language Specification of the ATL Virtual Machine
URL: http://www.eclipse.org/m2m/atl/doc/ATL_VMSpecification
%5Bv00.01%5D.pdf

27. E. Rencis, Model Transformation Languages L1, L2, L3 and Their Implementation,
Articles of the University of Latvia, “Computer Science and Information
Technologies” 2008.

28. Kalnins A., J. Barzdins, E. Celms. Efficiency Problems in MOLA Implementation.
19th International Conference, OOPSLA’2004 (Workshop “Best Practices for Model-
Driven Software Development”), Vancouver, Canada, October 2004

29. A. Kalnins, E. Celms, A. Sostaks. Simple and Efficient Implementation of Pattern
Matching in MOLA Tool. Proceedings of the 7th International Baltic Conference on
Databases and Information Systems (Baltic DB&IS’2006), Vilnius, Lithuania, July
3–6, 2006, pp. 159–167.

30. B. Efron, R.J. Tibshirani, “An Introduction to the Bootstrap”, Chapman & Hall/CRC,
1994, 436 p

31. Barzdins, J., Barzdins, G., Balodis, R., Cerans, K., Kalnins, A., Opmanis, M.,
Podnieks, K.: Towards Semantic Latvia. Proceedings of Seventh International Baltic
Conference on Databases and Information Systems, Communications, Vilnius,
Lithuania, O. Vasileckas, J. Eder, A. Caplinskas (Eds.), Vilnius, Technika, 2006, pp.
203–218.

32. S. Rikacovs, The base transformation language L0+ and its implementation, Articles
of the University of Latvia , “Computer Science and Information Technologies”,
2008

33. A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools. Bell
Laboratories, 1986

34. A. Kalnins, E. Celms, A. Sostaks. Tool support for MOLA. Fourth International
Conference on Generative Programming and Component Engineering (GPCE'05).
Proceedings of the Workshop on Graph and Model Transformation (GraMoT),
Tallinn, Estonia, September 2005, pp. 162–173

35. Celms E., A. Kalnins, L. Lace. “Diagram definition facilities based on metamodel
mappings”. Proceedings of the 18th International Conference, OOPSLA’2003
(Workshop on Domain-Specific Modeling), Anaheim, California, USA, October
2003, pp. 23–32

36. Eclipse – an open development platform. URL: http://www.eclipse.org/
37. Eclipse Modelling Framework (EMF, Eclipse Modelling subproject),

http://www.eclipse.org/emf/
38. Peter Dahm and Friedbert Widmann. GraLab - Das Graphenlabor. Projektbericht

4.3.0, University of Koblenz-Landau, Institute for Software Technology, 07 2003.
39. Java Technology URL: http://java.sun.com/
40. GCC, the GNU Compiler Collection URL: http://gcc.gnu.org/
41. Jouault, F., Bezivin, J., Consel, C., Kurtev, I., Latry, F. Building DSLs with AMMA/

ATL, a Case Study on SPL and CPL Telephony Languages. In: Proceedings of the
1st ECOOPWorkshop on Domain-Specific Program Development (DSPD), July 3rd,
Nantes, France. (2006)

42. ATL Use Case – Compiling a new formal verification language to LOTOS (ISO
8807) URL: http://www.eclipse.org/m2m/atl/usecases/FIACRE2LOTOS/

43. F. Jouault, and F. Allilaire, An introduction to the ATL Virtual MachineV1.0 draft
URL: http://www.eclipse.org/m2m/atl/doc/ATL_VM_Presentation_%5B1.0%5D.pdf

44. Extensible Markup Language (XML) 1.1 (Second Edition) URL: http://www.w3.org/
TR/xml11/

45. Slonneger, K. and B. Kurtz. Formal Syntax and Semantics of Programming
Languages. A Laboratory Based Approach, Addison-Wesley Publishing Company,
1995.

46. E. W. Dijkstra, GOTO Statement Considered Harmful, Letter of the Editor,
Communications of the ACM, March 1968, pp. 147–148.

47. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (1990). Introduction to
Algorithms, first edition, MIT Press and McGraw-Hill.

48. G. Varro, D. Varro and K. Friedl. Adaptive graph pattern matching for model
transformations using model-sensitive search plans. In G. Karsai and G. Taentzer
editors, Proc. of Int. Workshop on Graph and Model Transformation (GraMoT’05),
volume 152 of ENTCS, pages 191–205, Tallinn, Estonia, September 2005.

49. D. Dotan, A. Kirshin, Debugging and Testing Behavioral UML Models, Proceedings
of OOPSLA 2007, Montreal, Canada

50. ReDSeeDS. Requirements Driven Software Development System. European FP6 IST
project. http://www.redseeds.eu/, 2007.

