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Abstract. The implementation of the model transformation language MOLA 
compiler to the L3 language is described in the paper. It is shown that L3 is a 
suitable low-level model transformation language for efficient implementation 
of pattern matching in MOLA. A rationale for the chosen compiler architecture 
is  offered.  The detailed description of  mappings from MOLA to L3 is  also 
given. Some general approach to the graphical language compiler development, 
such as model-driven compiling and debugging, is also sketched.
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1   Introduction

Model  transformations play  an  important  role  in  the  Model-Driven  Software 
Development (MDSD) [1]. The main idea of MDSD is a systematic use of models as 
primary  software  engineering  artefacts  throughout  the  software  development 
lifecycle.  Model-Driven Development refers to a range of development approaches 
that are based on the use of software modelling. A model expresses a particular aspect 
of a software system in a certain level of detail. A code of the software system is 
generated  from  models  built  by  a  system  developer.  The  generated  code  varies 
ranging from a system skeleton to a complete product. It depends on the abstraction 
level of models used as a source for the generator. If the created models are at high 
level of abstraction, then model transformations are applied to create more detailed 
models  that  can  be  used  for  code  generation.  The  model  transformation  is  the 
automatic  generation  of  a  target  model  from  a  source  model,  according  to  a 
transformation  definition  [2].  Model  transformation  languages  are  used  to  define 
model transformations. Models that are used by model transformations must conform 
to metamodels. A metamodel defines a language which specifies a model. A model 
transformation  language  uses  metamodels  to  define  the  model  transformation.  A 
meta-language  specifies  the  metamodels.  The  general  architecture  of  model 
transformations is shown in Fig.1.
The  best  known  Model-Driven  Software  Development  initiative  is  the  Object 
Management Group (OMG) [3] Model-Driven Architecture (MDA) [4], which is a 
registered trademark of OMG. The OMG has developed the set of standards related to 
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MDA,  including  the  Meta-Object  Facility  (MOF)  [5]  (a  meta-language),  Object 
Constraint Language (OCL) [6], Unified Modelling Language (UML) [7] (a software 
development language), and MOF Queries/Views/Transformations (MOF-QVT) [8] 
(a model transformation language).

The  MDA  approach  defines  system  functionality  using  a  platform-independent 
model  (PIM)  that  is  written  in  an  appropriate  modelling  language  (for  example, 
UML). Then the PIM is transformed to one or more platform-specific models (PSMs), 
which include platform- or language-specific details. For example, the UML Profile 
for Java [9] can be used to specify the PSM. Then the PSM is translated to the code 
written in the language appropriate to the PSM. 

Today the application area for model transformation languages is much broader. 
One  such  area  is  generic  meta-model-based  modelling  tool  building.  The  model 
transformation languages can be used (and are used [10, 11, 12]) as a much more 
effective domain specific substitute for the general purpose languages that are used 
for tool building up to now. This paper shows that model transformation languages 
also  become  appropriate  facilities  for  compiler  building.  Thus,  domains  for 
applications of  model transformation languages  are  quite different,  but  the typical 
language constructs used for model processing in all these domains are quite similar.

The OMG was the first to state precisely the requirements what should be a model 
transformation language [13]. The MOF-QVT language, which is an answer by OMG 
itself to these requirements, becomes the OMG standard for model transformations 
[8]. In MOF-QVT source and target meta-models conform to the MOF. There are two 
variants of MOF defined – the EMOF (Essential MOF) and the CMOF (Complete 
MOF). The MOF can be viewed as a general standard to write metamodels, but, more 
specifically, EMOF is used for metamodel definition in MOF-QVT. The MOF-QVT 
standard defines two languages of transformation development – the  Relations and 
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the  Operational  Mappings.  The  Relations language  is  at  the  highest  level  of 
abstraction  and  uses  patterns  and  a  declarative  transformation  definition  style 
whenever possible. This language has two semantically equivalent concrete syntaxes 
– a graphical and a textual one. The Operational Mappings language is an imperative 
textual  language.  The  syntax  of  the  Operational  Mappings provides  constructs 
commonly  found  in  imperative  languages  (loops,  conditions,  etc),  while  the 
management of model elements is based on extended OCL constructs. Actually, the 
MOF-QVT specification [8] also contains the third language – the Core. The role of 
this language is to serve for semantic definition of the first two OMG languages and 
also for possible implementation of these languages. There are several realizations of 
the  MOF-QVT  language.  The  Relations textual language is  implemented  in  the 
medini  QVT  [14].  The  Operational  Mappings language is  implemented  in  the 
SmartQVT [15], several less complete implementations are also available.

There are many other model transformation languages which also satisfy the OMG 
requirements.  There  are  textual  model  transformation  languages  –  ATL  [16], 
VIATRA2  [17],  the  Lx  language  family  (L0-L3)  [18]  and  also  graphical  model 
transformation languages – Fujaba [19], GReAT [20], MOLA [21]. In  fact,  model 
transformation languages existed even before the OMG coined this concept. These 
were  the  graph  transformation languages,  which  were  used to  transform a source 
graph to a target  graph in a rule-based manner.  The structure of both graphs was 
defined by means of graph grammars which, in fact, are the same metamodels. There 
are several such graph transformation languages that are now being used as the model 
transformation languages, for example, AGG [22] and PROGRES [23].

Most of the model transformation languages rely on an EMOF-compatible meta-
language  for  defining  metamodels.  For  example,  Fujaba  and  GReAT  use  class 
diagram notations close to EMOF, and ATL uses KM3 [24] (a certain extension of 
EMOF).  Sometimes meta-languages  are  used that  are  much more  expressive than 
EMOF, for example, VTML [25] for the VIATRA2 language. An implementation of 
a metamodelling language is closely related to the specific repository used for storing 
models.

An efficient  implementation of model transformation languages  is  still  a  topical 
issue.  There  are several  possibilities of implementation. A direct  compilation to a 
general  purpose  programming  language  is  a  common  approach  (AGG,  Fujaba, 
GReAT).  The  result  of  the  compilation  contains  invocations  of  the  API  of  the 
repository  used  to  manage  models  and  the  corresponding  metamodel.  Another 
possibility  is  a  compilation  to  an  intermediate  “very  low-level”  transformation 
language, for example, ATL uses the so called ATL byte-code [26]. It is also possible 
to build a direct interpreter of a model transformation language, as it is done for the 
VIATRA2 language.

The  model  transformation  language  MOLA  is  developed  by  the  University  of 
Latvia,  Institute  of  Mathematics  and  Computer  Science.  This  paper  describes  the 
implementation  of  the  MOLA  compiler.  The  MOLA  compiler  uses  a  different 
approach  by  compiling  MOLA  to  L3,  which  is  a  lower-level  textual  model 
transformation language, but still has features typical of a transformation language. 
The L3 language is an imperative language which also includes imperative facilities 
for pattern definition; therefore, the compilation of declarative patterns in MOLA is 
the only complicated part of MOLA to L3 compiler realization. The L3 language is 



efficient regarding implementation [27], and it is also developed by UL, IMCS. The 
L3 language is also used for the development of MOLA compiler. In other words, the 
compiler  itself  is  built  as  a  model  transformation.  Therefore,  the  chosen 
implementation is  relatively simple and at  the same time guarantees  efficiency of 
implementation.

A brief introduction to the MOLA language is given in chapter 2. The experience 
gained in building the previous MOLA realizations is  described in chapter  3.  The 
language family Lx is introduced in chapter 4. The general architecture of the MOLA 
compiler and a brief overview of the model-driven compiling are given in chapter 5. 
Mappings from MOLA to L3 are described in details in chapter 6. Chapter 7 contains 
MOLA environment problem descriptions and possible solutions that are not directly 
related to the compiling process.

2   MOLA Language

MOLA is a graphical model transformation language, which is used for transforming 
an instance of a source metamodel (the source model) into an instance of the target 
metamodel (the target model). A transformation definition in MOLA consists of the 
source and target metamodel definitions and one or more MOLA procedures.

Fig. 2. The metamodel of the MOLA metamodelling language



Source  and target  metamodels  are  jointly defined  in  the  MOLA metamodelling 
language,  which  is  quite  close  to  the  OMG  EMOF  specification  [8].  These 
metamodels are defined by means of one or more class diagrams, packages may be 
used in a standard way to group the metamodel classes. Actually,  the division into 
source and target parts of the metamodel is quite semantic, as they are not separated 
syntactically (the complete metamodel may be used in transformation procedures in a 
uniform  way).  Typically,  additional  mapping  associations  link  the  corresponding 
classes  from source  and target  metamodels;  they facilitate  the building of  natural 
transformation procedures and document the performed transformations. The source 
and target metamodel may be the same – that is the case for in-place model update 
transformations.  The  MOLA  metamodelling  language  is  defined  formally  in  the 
Kernel package of the MOLA metamodel (see Fig. 2).

MOLA procedures form the executable part of a MOLA transformation. One of 
these  procedures  is  the  main  one,  which  starts  the  whole  transformation.  MOLA 
procedure  is  built  as  a  traditional  structured  program,  but  in  a  graphical  form. 
Similarly  to  UML  activity  diagrams  (and  conventional  flowcharts),  control  flow 
arrows determine the order of execution of MOLA statements. Call statements are 
used to  invoke sub-procedures.  However,  the basic  language  statement  of  MOLA 
procedures  is  specific  to the model  transformation domain  – it  is  the  rule.  Rules 
embody  the  pattern  match  paradigm,  which  is  typical  of  model  transformation 
languages. Each rule in MOLA has the pattern and the action part. Both are defined 
by  means  of  class-elements and  -links.  A  class-element  is  a  metamodel  class, 
prefixed by the element (“role”) name (graphically shown in a way similar to UML 
instance).  An  association-link  connecting  two  class-elements  corresponds  to  an 
association linking the respective classes in the metamodel. A pattern is a set of class-
elements and -links which are compatible to the metamodel for this transformation. A 
pattern may simply be a metamodel fragment, but a more complicated situation is also 
possible – several class-elements may reference the same metamodel class – certainly, 
their element names must differ (these elements play different roles in the pattern, 
e.g., the start and end node of an edge). A class-element may also contain a constraint 
– a Boolean expression in a simplified subset of OCL. The main semantics of a rule is in 
its pattern match – an instance set in the model must be found, where an instance of 
the appropriate class is allocated to each class-element so that all required links are 
present in this set and all constraints evaluate to true. If such a match is found, the 
action part of the rule is executed. The action part also consists of class-elements and 
links, but typically these are create-actions – the relevant instances and links must be 
created. An end of a create-link may also be attached to a class-element included in 
pattern. Assignments in class-elements may be used to set the attribute values of the 
instances. Instances may also be deleted and modified in the action part. Thus a rule 
in MOLA typically is used to locate some construct in the source model and build a 
required equivalent construct in the target model. If several instance sets in the model 
satisfy  the  rule  pattern,  the  rule  is  executed  only  once  (on  an  arbitrarily  chosen 
match). Such a situation should be addressed by another related construct in MOLA – 
the loop construct. In addition, the reference mechanism (a class-element may be a 
reference to an already matched or created instance in a previous rule) is used to 
restrict the available match set. Thus, rules are typically used in MOLA in situations 
where at most one match is possible. Certainly,  there may be a situation when no 



match exists – then the rule is not executed at all. To distinguish this situation, a rule 
may have  a special  ELSE-exit  (a  control  flow labelled  ELSE),  which is  traversed 
namely  in  this  situation.  Thus,  a  rule  plays  in  MOLA  the  role  of  an  if-then-else 
construct as well.

Another essential construct in MOLA is the loop (more concretely, for-each loop). 
The loop is a rectangular frame, which contains one special rule – the loophead. The 
loophead is a rule which contains one specially marked (by a bold border) element – 
the  loop  variable.  The  semantics  of  a  for-each  loop  is  that  it  is  executed  for  all 
possible matches for the loophead, which differ by instances allocated to the loop 
variable (possible variations for other loop head elements are not taken into account). 
In fact, a for-each loop is an iterator which iterates through all possible instances of 
the  loop  variable  class  that  satisfy  the  constraint  imposed  by  the  pattern  in  the 
loophead.  With  respect  to  other  elements  of  the  pattern  in  the  loop  head,  the 
“existential semantics” is in use – there must be a match for these elements, but it 
does not matter whether there are one or several such matches. Thus a for-each loop is 
the main MOLA construct, which is used to code a situation: “for each instance of . . . 
which satisfies . . . perform the following transformation. . . ”. Namely such situations 
in informal descriptions of model transformations are frequently called transformation 
rules, but in MOLA they must be formalised as for-each loops. In addition to the 
loophead, a loop typically contains the loop body – other MOLA statements whose 
execution order is organised by control flows. The loop body is executed for each 
iteration of the loop. Since the loop head is a rule, it may also contain create actions, 
thus simple transformations of source model elements may be coded in MOLA by 
loops consisting of the loop head only. For nested loops the main organising feature is 
the possibility to reference the loop variable (and other elements) of the main loop in 
the  pattern  of  the  nested  loop  head,  thus  specifying  an  iteration  over  all  related 
instances (to the current instance in the main loop).

There also are other available constructs in MOLA procedures.  Procedures  may 
have  parameters (of  type  of  a  metamodel  class  or  a  primitive  type)  and  local 
variables (also  of  both  types).  These  elements  may be  used  in  MOLA  rules,  in 
addition, text-statements (consisting of a constraint and assignments) may be used to 
process these elements more directly. For primitive-typed variables the text statement 
is the only option. A text statement containing a constraint (a Boolean expression) 
may also have an  ELSE-exit  and serve  as  an if-then-else construct  (in addition to 
rule). Besides MOLA procedures, external (coded in an OOPL) procedures can also 
be  invoked;  this  feature  is  used  for  low-level  data  processing  (e.g.,  model  data 
import). It should be noted that MOLA has no built-in UI support (MOLA is oriented 
towards  behind-the-scenes  transformations),  therefore  diagnostic  messages  and 
similar situations should be addressed via a library of external procedures. All MOLA 
procedure  elements  are  defined  formally  in  the  MOLA  package  of  the  MOLA 
metamodel (see Fig. 3).



 
Fig. 3. The metamodel of the MOLA procedure elements



The execution of a MOLA transformation on a source model starts from the main 
procedure. A loop is executed while there are instances to iterate over, then the next 
construct according to the control flow is executed. If a rule without a valid match is 
to  be  executed,  and  this  rule  has  no  ELSE-exit,  then  the  current  procedure  is 
terminated (if this occurs outside a loop) or the next iteration of the loop is started 
(within a loop body). When the main procedure reaches its end, the transformation is 
completed.

3   Previous Realizations of MOLA

The  most  critical  part  of  the  implementation  of  a  pattern-based  transformation 
language is the implementation of the pattern matching. It  has been already shown 
[28]  that  an  efficient  MOLA  pattern  matching  implementation  is  possible.  This 
realization is based on only few specific low-level operations needed to iterate over a 
model. They are:

• getNext(Class Cl) – returns the next instance of a metaclass Cl upon 
each  call.  There  is  also  an  initialization  for  it  – 
initializeGetNext(Class Cl)

• getNextByLink(Association as, Cl1 inst, Class Cl2) – 
returns one by one instances of a metaclass Cl2 that can be reached by links 
corresponding to association as from a fixed instance  inst. There is also 
an  initialization  for  it,  with  similar  parameters  – 
initializeGetNextByLink(Association  as,  Cl1  inst, 
Class Cl2)

• checkLink(Cl1 inst1, Cl2 inst2, Association as) – 
checks whether a link of the required type is between these instances

• eval(Cl  inst,  Expr  exp)  –  evaluates  a  local  constraint  on 
attributes

Thus, the target language of the MOLA compiler or the API of a repository that is 
used for realization of the MOLA interpreter (Virtual Machine) must contain similar 
operations.  This  approach  requires  the  implementation  of  the  pattern  matching 
algorithm using such low-level constructs. That is a sufficiently complicated task.
Another approach that can be used for pattern matching is to rely on some powerful 
high-level  pattern  matching  language  and  build  mappings  from MOLA  to  it.  An 
appropriate model repository must also be chosen.

The previous realization of MOLA [29] used SQL queries as a pattern matching 
language and a relational database as the model repository. A fixed database schema 
had been defined in the most natural way by storing the metamodel in tables which 
correspond  to  the  EMOF  metamodel  classes.  The  storage  of  model  elements  – 
instances  of  metamodel  classes,  associations,  and  attributes  was  completely 
straightforward in the corresponding tables.  A MOLA program was also naturally 
stored in tables according to the MOLA metamodel. The main idea was to map a 
MOLA pattern to a single SQL statement. SQL queries generated by this realization 
were large self-join queries that are non-typical of standard database applications. The 



database  engines  were  performing  efficiently  for  queries  if  the  number  of  class 
elements  in  a  MOLA  pattern  did  not  exceed  a  certain  number.  Experiments  and 
benchmark tests had shown that the implemented MOLA Virtual Machine performed 
satisfactorily  and  MOLA is  a  suitable transformation  language  for  typical  MDSD 
tasks. However, for an industrial usage of MOLA a special in-memory repository and 
a compiler/interpreter that implements the principles described in [28] is required.

The next step in the realization of the model transformation language MOLA was 
to search for a solution which satisfies the requirements mentioned above. 

4   Lx Language Family

The  search  for  a  suitable  solution  for  the  MOLA  realization  revealed  that  an 
appropriate  language  and  also  a  repository  could  be  found  nearby.  The  model 
transformation  languages  Lx  [18]  (the  so  called  Lx  language  family)  fulfil  the 
requirements  mentioned  in  the  previous  chapter.  Textual  model  transformation 
languages  Lx  contain  the  base  transformation  language  L0  and  its  related 
transformation languages L0’, L1, L2 and L3. Each of these languages is based on the 
previous language of this family by adding some extra features. 

The model transformation language L3 has been chosen as a target language for the 
MOLA compiler. A more detailed description of the Lx language family is available 
in [32] and [27]; however,  a brief overview of all  these languages is given in this 
chapter  in  order  to  make  this  paper  understandable  without  reading  the  papers 
mentioned above.

4.1   Lx Metamodelling Facilities

The Lx language family, as any other model transformation language, uses some sort 
of metamodelling language. It is quite close to the OMG EMOF specifications. The 
main  difference  is  that  multiple  generalization  is  not  allowed  and  there  are  no 
packages in this metamodelling language. The metamodel of this language is shown 
in Fig. 4.



Classes and binary associations are core elements of this language. Classes can have 
attributes which can be primitive or enumeration-typed. There are four pre-defined 
primitive types  –  String,  Integer,  Boolean, and  Real.  There are no possibilities to 
define new ones.
The basic commands (constructs for a textual definition of a metamodel) of the Lx 
family metamodelling language are the following:

o class <className>; – defines class with a given name.
o attr <className>.<attrName>:<ElementaryTypeName>; – defines 

attribute with a given name and type. 
o assoc <className>.

{ordered}<card><roleName>/<roleName><card>{ordered}. 
<className>; – defines association with corresponding properties.

o compos <compositeClassName>.
{ordered}<card><roleName>/<roleName><card> 
{ordered}.<partClassName>;  – defines compositions with 
corresponding properties. 

o rel <subClassName>.subClassOf.<superClassName>; – defines a 
generalization relationship between given classes.

o enum <enumName>:{ <enumLiteral1> , < enumLiteral2>,  … }; – 
defines enumeration with given elements.

4.2 Language L0

An elementary unit of L0 transformation is a command (an imperative statement). L0 
transformation contains several parts:

• global variable definition part;

Fig. 4. The metamodel of Lx metamodelling language



• native subprogram (function or procedure) declaration part (used C++ library 
function headers);

• L0 subprogram definition part. Exactly one subprogram in this part is the 
main. The main subprogram defines the entry point of the transformation. 
An L0 subprogram definition also consists of several parts:

o Subprogram header
 procedure <procName>(<paramList>); Subprogram 

header,  the  (formal)  parameter  list  can  be  empty. 
Parameter  list  consists  of  formal  parameter  definitions 
separated  by  “,”.  A  parameter  definition  consists  of  its 
name, the parameter type (the type can be an elementary 
type  or  a  class  from  the  metamodel),  and  the  passing 
method  (parameters  can  be  passed  by  reference  or  by 
value).  If  the  parameter  is  passed  by reference,  its  type 
name is preceded by the & character.

 function <funcName>(<paramList>): <returnType>; – 
return type name can be an elementary type name or class 
name.

o Local variable definitions 

 pointer <pointerName>  : <className>; – defines  a 
pointer to objects of class <className>.

 var <varName>  : <ElementaryTypeName>; – defines  a 
variable  of  elementary  type.  <ElementaryTypeName>  is 
one of elementary types. 

o Keyword begin – starts subprogram body definition
o Subprogram body definition
o Keyword end - ends subprogram body definition.

The subprogram body definition may contain the following commands:
1. return;  – returns execution control to caller procedure or function. 

2. call <subProgName>(<actPrmList>); – calls  a subprogram. Actual  parameters 
list can be empty. Actual parameter list consists of binary expressions separated 
by “,”.

3. label <labelName>; – defines a label with the given name.

4. goto <label>; – unconditionally transfers control to <label>. <label> should be 
located in the current subprogram.

5. first <pointer> : <className> else <label>; – positions <pointer> to an arbitrary 
object of <className>. Typically, this command in combination with the next 
command is used to traverse all objects of the given class (including subclass 
objects).  If  <className> does not have objects,  <pointer> becomes  null,  and 
execution  control  is  transferred  to  the  <label>.  The  <className>  in  this 
command  must  be  the  same  as  (or  a  subclass  of)  the  class  used  in  pointer 



definition.  If  it  is  a  subclass,  then  the pointer  value  set  is  narrowed (for  the 
subsequent executions of next).

6. first <pointer1> : <className> from <pointer2> by <roleName> else <label>; 
– similar to the previous command. The difference is that it positions <pointer1> 
to  an  arbitrary  class  object,  which  is  reachable  from <pointer2>  by the  link 
<roleName>. Similarly, this command in combination with the next command is 
used to traverse all objects linked to an object by the given link type.

7. next <pointer>  else <label>; – gets the next object, which satisfies conditions, 
formulated during the execution of the corresponding  first and which has not 
been  visited  (iterated)  with  this  variable  yet.  If  there  is  no  such  object,  the 
<pointer> becomes null, and execution control is transferred to <label>.

8. addObj <pointer>:<className>; – creates a new object of the class 
<className>.

9. addLink <pointer1>.<roleName>.<pointer2>; – creates  a  new  link  (of  type 
specified by <roleName>) between the objects pointed to by the <pointer1> and 
<pointer2> , respectively.

10. deleteObj <pointer>; – deletes the object, which is pointed to by <pointer>.

11. deleteLink <pointer1>.<roleName>.<pointer2>; – deletes  link  whose  type  is 
specified  by  <roleName>  between  objects  pointed  to  by  <pointer1>  and 
<pointer2>, respectively.

12. setPointer <pointer1>=<pointer2>; – sets  <pointer1>  to  the  object  which  is 
pointed to by <pointer2>. Instead of <pointer2> the null constant can be used. 

13. setVar <variable>  = <binExpr>; – sets  <variable>  to  <binExpr>  value. 
<binExpr>  is  a  binary expression  consisting  of  the  following  elements: 
elementary  variables,  subprogram parameters  (of  elementary  types),  literals,  
object attributes, and standard operators (+,-,*,/,&&,||,!).

14. setAttr <pointer>.<attrName>=<binExpr>; – sets  the  value  of  attribute 
<attrName> (of the object,  pointed to by <pointer>) to the <binExpr> value.

15. type <pointer> == <className> else <label>; – if the type of the pointed object 
is identical to the <className>, then control is transferred to the next command, 
else  control  is  transferred  to  <label>.  Instead  of  the  equality  symbol  == an 
inequality symbol != can be used. This command is used for determining the 
exact subclass of an object.

16. var <variable>==<binExpr> else <label>; – if the condition is true, then control 
is transferred to the next command, else control is transferred to <label>. Instead 
of equality symbol other (<, <=, >, >=, !=) relational operators compatible with 
argument types can be used.

17. attr <pointer>.<attrName>  == <binExpr>  else <label>; – if  the  condition  is 
true, then control is transferred to the next command, else control is transferred 
to <label>. Other relational operators (<, <=, >, >=, !=) can be used too.



18. link <pointer1>.<roleName>.<pointer2> else <label>; – checks whether there is 
a link (with the type specified by <roleName>) between the objects pointed to by 
<pointer1> and <pointer2>, respectively.

19. pointer <pointer1>==<pointer2>  else <label>; – checks  whether  the  objects 
pointed to by <pointer1> and <pointer2> are identical.  Instead  of  <pointer2> 
null constant can be used. The inequality symbol (!=) can be used too.

It  is  easy  to  see  that  the  language  L0  contains  only  the  very  basic  facilities  for 
defining transformations [32].

4.3   Languages L0’ – L3

Language L0’  – model transformation language L0’ is based on the language L0. 
The new feature of L0’ is the possibility to make long arithmetic expressions (in L0, 
only unary and binary expressions were allowed).
Language L1 – is supplemented with an imperative pattern matching feature, so that 
it is possible to search for instances that match some condition. Any L1 pattern can 
contain conditions on values of variables or attributes, links between instances and 
other. In fact, all L1 commands can be used to specify pattern condition.
The textual syntax for the pattern (such-that block) is as follows:
suchthat
begin
<L1Commands>
end;

The condition holds if it is possible to  successfully [27] reach the end of the block 
(i.e.,  successfully  execute  its  last  command).  The  “conditional”  commands  in  L0 
(commands that  have an  else branch) may be used without the  else  branch in the 
such-that block. If in such a command the undefined  else  branch is to be executed, 
then the condition defined by the pattern fails.
The such-that block may be used with first and next commands.
Language L2 – has the possibility to make loops. A special command exists in L2 
with which it is possible either to visit all instances of the specified class or just those 
instances of the class that match the given pattern. The textual syntax for the loop is 
as follows:
foreach <pointerName1> : <className> [ from 
<pointerName2> by <roleName> ] [ suchthat
begin

<L2Commands>
end ]
do
begin

<L2Commands>
end;

Language L3 – has the branching command – a standard if-then-else construct can be 
used. The textual syntax of the branching command is as follows:
if
begin



<L3Commands>
end
then
begin

<L3Commands>
end
[ else
begin

<L3Commands>
end ];
The L3 metamodel (the Lx language family metamodel) is shown in Fig. 5.

4.4   MOLA and L3

The main reasons  why the  Lx  model  transformation  language  family and  the  L3 
language, particularly, have been chosen are described in this section.

One  of  the  main  requirements  that  must  be  met  is  the  compatibility  of 
metamodeling languages. In our case metamodelling languages are EMOF-based for 
both MOLA and Lx language family.  There are no significant differences between 
both  languages,  but  such  minor  issues  like  absence  of  packages  in  Lx  family 
metamodeling language can be resolved using name prefixes for class names. Thus, 
we can claim that MOLA and Lx metamodeling languages are fully compatible.



 
Fig. 5. The metamodel of L3 language



It  has  already  been  shown  [28]  that  MOLA  language  can  be  implemented 
efficiently using a set of low-level operations for patterns. There is a direct mapping 
from the required operations to the commands of Lx model transformation family.

• initializeGetNext(Class  Cl)and  getNext(Class  Cl) 
operations  can  be  mapped  to  first c:Cl and  next c commands.  These 
commands return all instances of a given meta-class. In the beginning the 
first c:Cl command must be called to initialize the iteration through required 
instances and afterwards the next c must be called to iterate through.

• initializeGetNextByLink(Association  as,  Cl1  inst, 
Class  Cl2) and  getNextByLink(Association  as,  Cl1 
inst, Class Cl2) operations can be mapped to the  first c:Cl2 from 
inst by as and next c commands. These commands return all instances of a 
given meta-class navigable by links of the given type from a fixed instance. 
The iteration must be done similarly to the previous case.

• checkLink(Cl1  inst1,  Cl2  inst2,  Association  as) 
operation can be mapped to the link inst1.as_rolename.inst2 command. The 
semantics of this command is the same as the semantics of this operation – 
check the existence of a link of the given type between two fixed instances.

• eval(Cl inst, Expr exp) operation is an expression interpreter and 
the MOLA realization to L3 must implement a generator of sequences of L3 
commands that interprets the given expression. The core elements of such 
expressions are attribute or variable value checks. These operations can be 
mapped  to  attr inst.<attrname><relation><expression> and  var 
<varname><relation><expression> commands  accordingly.  Arithmetic 
expressions can be mapped to expressions introduced by the L0’ language. 
Constraints  that  are  complex  (Boolean)  expressions  where  conjunction, 
disjunction and negation are used can be mapped to a sequence of commands 
which interprets the given expression.

MOLA operations that create update and delete instances and links can be mapped 
to addObj,  addLink, setAttr,  deleteObj,  deleteLink commands. The control flows 
in MOLA can be mapped to label and goto commands in L3 language. L3 language 
as  well  as  MOLA  has  such  concepts  as  procedure,  parameter,  variable,  sub-
procedure call. These concepts can be mapped directly from MOLA to L3 language. 
Thus L3 language provides all necessary features that allow us to build an efficient 
MOLA compiler. 

These basic features are included in the L0’ language, but commands introduced in 
the following languages L1-L3 (pattern matching, looping, and branching commands) 
allow much easier implementation of the MOLA compiler. That is possible because 
these commands are at an abstraction layer much closer to MOLA concepts, such as 
for-each loop and rule, than basic, L0 and L0’, commands.

A detailed description of the mapping from MOLA to L3 is given in chapter 6 of 
this paper.



5   Architecture of MOLA Compiler

This chapter describes the general architecture of the MOLA compiler. It includes the 
chain of compilers from MOLA to L3, L3 to L0, L0 to C++, and C++ to executable 
code. An introduction to the model-driven compiling is also included in this chapter.

5.1   Implementation of the Lx Language Family

An efficient  compiler  has  been  already  built  [18]  for  the  Lx  language  family. 
Actually, an efficient realization of the L0 language has been built, and a compiler for 
each next language is built  using the bootstrapping method [30]. It  means that the 
previous language in the family is used to build the compiler for the next one (L0 for 
L0’ compiler, L0’ for L1 compiler, and so on).

The metamodel-based in-memory repository [31] developed by the UL IMCS has 
been  chosen  to  store  metamodel  and  its  instances  for  the  implementation  of  L0 
language. This repository has an appropriate low-level API implemented as a C++ 
function library.  Therefore,  the intermediate result of the L0 compilation is a C++ 
program. The final result of the L0 compilation is a dynamic link library (DLL file) 
that  can  be  executed  over  a  repository  instance  which  contains  the  appropriate 
metamodel and model and must be loaded into memory. The experiments have shown 
that  the repository itself  and the selected way of compilation to the API [32]  are 
efficient for the implementation of a model transformation language.

The bootstrapping method used to build compilers for the rest  of the Lx family 
languages requires that programs written in L0’ to L3 must be stored in the repository 
that is used by L0 language. Thus, the metamodel of the L3 language is required. All 
other languages of the Lx family are described by the same metamodel because each 
next  language  is  derived  from  the  previous  one  by  adding  some  new  features; 
therefore, the metamodel of the last language in the chain (L3) also describes all the 
previous languages. 

The  first  step  in  the  compilation  of  an  L3  program  is  to  obtain  a  model  – an 
instance  of  the  L3  metamodel.  It  is  a  representation  of  the  L3  program  in  the 
metamodel-based repository. This step is a separate step in the whole process of the 
compilation  which  requires  parsing  of  the  text  file  and  building  a  model.  It  is 
implemented using a traditional programming language (C++). Obtained lexemes [33, 
chapter 3] are stored in the repository as a very simple lexeme model [27]. Next, the 
transformation language L0 is used to obtain the L3 program model from the lexeme 
model.

When a program model has been built, the actual compilation is being performed. 
The L3 (also L2, L1, L0’) compiler actually is a model transformation. In this case, an 
in-place  transformation  is  used  –  the  L3  program  model  is  overwritten  by  the 
semantically equivalent L2 program model (also L2 by L1, etc.). The final result of 
the  chain  of  compilation  steps  is  an  L0  program  model  which  is  semantically 
equivalent to the initial L3 program given as the input file. The chain of compilation 
steps (from L3 to L0) can be treated as one step (the corresponding transformations 
are invoked one after another).

The last step in the compilation process is the code generation (a model to text 
transformation). An L0 language text file is generated. This step is also carried out 



using the L0 language extended with native functions for file handling written in C++. 
Actually, only one write to file function is needed.

5.2   MOLA Compiler

Since the whole L3 compilation process has been divided into three separate steps, 
there is a possibility to start with any step if the appropriate model has been prepared. 
This fact  is  used by MOLA to L3 compiler  – MOLA program is being compiled 
directly to an L3 model. This allows to decrease significantly the complexity of the 
implementation of MOLA to L3 compiler. Actually, it allows to use transformation 
language L3 to build MOLA to L3 compiler.

The first MOLA Transformation Definition Environment (MOLA Editor) [34] was 
built  on  the  basis  of  Generic  Modelling  Framework  [35]  –  a  domain-specific 
modelling framework, developed by the UL IMCS together with the company Exigen 
Services  DATI.  The  models  (MOLA  program  and  metamodel)  were  stored  in  a 
compatible format to the repository used by the L0 language. Thus, the input for the 
MOLA  to  L3  compiler,  a  model  of  a  MOLA  transformation,  already  could  be 
obtained. In fact, no other natural representation of a MOLA program than a model 
can be obtained because MOLA is a graphical  transformation language.  The most 
appropriate way to implement MOLA compiler to any suitable language is by using 
model transformations. Thus, the first MOLA compiler was implemented using L3 
language.

Since the MOLA Editor required more sophisticated features than the GMF domain 
specific modelling framework could offer, the next MOLA Editor – MOLA2 Tool – 
has been built. MOLA2 Tool uses the METAclipse framework [10], which is based 
on  Eclipse  platform  [36]  and  model  transformations.  It  should  be  noted  that 
METAclipse uses the same repository as the L0 realization. Therefore it was possible 
to develop transformations for MOLA2 Tool using MOLA itself and the first MOLA 
compiler. The second version of MOLA to L3 compiler has been built for MOLA2 
Tool, also using L3 language.

Although there are two implementations of MOLA to L3 compiler,  there are no 
significant differences in the architecture and general ideas of the implementations of 
both  compilers.  The  main  difference  between  these  two  implementations  is  the 
MOLA  metamodel.  The  MOLA  metamodel  for  MOLA2  Tool  was  improved  by 
eliminating metamodel restrictions enforced by GMF and making it more suitable for 
compilation. The experience and a significant part of the code from the first version of 
MOLA to L3 compiler is reused in the second version. This paper is based on the 
second version of MOLA to L3 compiler.

Compilation of a MOLA transformation is divided into four steps. Each of them is 
performed by a separate component – compiler. These components are:

• MOLA to L3 compiler, 
• L3 to L0 compiler,
• L0 to C++,
• C++ to executable file.

The general architecture of MOLA compiler is shown in Fig. 6.



A question may arise – why such a large number of compilers are used? Why do 
not use direct compilation from MOLA to C++? The answer is in the low complexity 
and reusability of each step. Each compiler transforms a higher-level language to a 
lower-level language. It  is much easier to build compiler to a language that is at a 
closer  abstraction  level  to  the  source  language.  Especially  it  is  so  if  the  general 
concepts of both languages are similar. This is the reason why L3 (and not L0) is used 
as the target language for MOLA. Another issue is the reusability. The compiler of L3 
language was already built and this implementation was efficient. The efficiency of 
the generated code does not suffer if MOLA compiler is built on top of the compiler 
chain.  In  addition,  if  we  will  decide  to  implement  MOLA  on  another  EMOF 
compatible repository, for example, EMF [37] or Gralab [38], then only L0 compiler 
must be rewritten. Even less, only the actual code generator in L0 compiler must be 
rewritten – the lexical and syntax analyzers can be reused. The last compiler (L0 to 
code)  is  dependent  on the programming language  that  implements  the API of  the 
model repository, but for most programming languages it is already built and free, or 
open-source versions are available.  For example, there are free compilers for Java 
[39]  and  C++  [40].  The  only  disadvantage  of  a  long  compiler  chain  is  longer 
compilation time, but it  is not a significant  problem in areas where transformation 
languages are used.

5.3   Model-Driven Compiling

The usage of models and transformation languages in the process of compilation is 
not  new.  The ATL model  transformation  language  [16] has  already been  used to 
compile CPL to SPL [41] and FIACRE to LOTOS [42]. The ATL language itself is 
also compiled using a domain-specific language created only for this purpose – ACG 
(ATL Code Generation language) [43]. All  of these are textual  languages and the 
model-to-model transformation is used for actual compilation similarly to the way it 
was used in the example of the L3 to L0 compilation [27]. A similar idea is also used 
in the SmartQVT [15] implementation. The QVT code is parsed to obtain the model 
representation of a QVT transformation, and the actual compilation to the Java file is 
performed using this model.

A similar  pattern of  compilation is  used in  all  examples.  Three  basic  steps  are 
performed:

• parse an input program and obtain the model of it,
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• compile the model of the input program to the model of an output program,
• generate the code of the output program from the model.

This approach may be called  model-driven compiling  – models are used as core 

elements of the compilation process (see Fig. 7).

These steps are similar to the phases of compilation in the traditional compilation 
technique [33, chapter 1]. The lexical and syntactical analyses are performed by the 
parser. The semantic analysis, intermediate code generation (target program model), 
and  optimization  are  performed  by  compiler  (model  transformation).  The  code 
generation is done in the last step. The model of a source program is stored according 
to  the  language  metamodel.  Actually,  the  parse  trees  used  in  the  traditional 
compilation  technique  can  be  treated  as  sort  of  models.  Thus,  the  similarity  is 
obvious.

All  three  steps  of  the  model-driven  compiling  require  appropriate  metamodels 
already built for both input and output languages and transformation written using a 
model transformation language suitable for the compilation tasks. Actually,  text-to-
model  (T2M),  model-to-model  (M2M),  and  model-to-text  (M2T)  languages  are 
needed.  An  exporter  or  importer  written  in  the  general  purpose  programming 
language can be used instead of the T2M and M2T transformations. Certainly,  the 
choice of the programming language depends on the repository used to store models.

The model-driven compiling is even more appropriate for graphical languages such 
as MOLA. Since programs of graphical languages are stored as models, the first step 
can be omitted – the model-to-model transformation that implements a compiler can 
be applied directly.
The main advantages of using model-driven compiling:

• The higher  level  of  abstraction  that  is  provided  by model  transformation 
languages allows reducing the complexity of compiler implementation. 

• This is the most  appropriate  way to compile graphical  languages because 
they are  mostly implemented using some metamodel  [37]  or  graph-based 
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[38] repository. Actually, programs (diagrams) of such languages are models 
and  the  usage  of  a  model  transformation  language  is  the  most  natural 
approach.

• If  the  concrete  syntax  of  the  input  language  is  based  on  some  general 
“coding”  language,  like  XML  [44],  then  model  transformations  can  be 
applied to obtain the model of the program from its “coding”. In this case, a 
standard parser can be used to obtain the model of the “coding”. Next, the 
model transformation can be used to obtain the model conforming to the 
input  language  metamodel.  A similar  approach  is  also  applicable  for  the 
output language.

• Since  attribute  grammars  have  been  used  to  specify  the  semantics  of 
programming  languages  [45],  a  precise  definition  of  the  model 
transformation between source language and target languages can be used to 
define the semantics of the source language in even more readable way.

The first experience in using  model-driven compiling was quite promising. The 
MOLA to L3 and L3 to L0 [27] compilers have been developed. The implementation 
of both compilers has shown that using transformation language for compilation tasks 
reduces the complexity of the implementation. However, the best practice of model-
driven  compiling  has  yet  to  be  developed,  and  comparison  to  the  traditional 
compilation techniques [33] must be drawn.

6   Mapping from MOLA to L3

This chapter contains detailed description of the mapping from MOLA to L3. That 
includes  mapping  of  metamodeling  language  constructs  and  mapping  of  MOLA 
procedure and its elements to constructs of the L3 language.

6.1 Mapping of Metamodelling Languages

Both MOLA metamodelling language and the Lx family metamodelling language are 
based  on  EMOF.  So  the  mapping  is  straightforward.  For  the  description  of  this 
mapping,  we  will  use  the  meta-class  names  from  MOLA  and  Lx  family 
metamodelling language metamodels shown in Fig. 2 and Fig. 4. The MOLA related 
meta-class names are prefixed by the  Kernel prefix, but the Lx related meta-class 
names are prefixed by the Lx prefix.

• Each  Kernel::Class  instance  is  transformed  to  Lx::Class  with  the  same 
name, but since there are no packages in Lx, the Lx::Class name is prefixed 
by  all  parent  package  names.  For  example,  the  Kernel::Class “Lifeline”, 
which is owned by the package  “Interactions”, which is in package “UML”, 
is transformed to Lx::Class named “UML::Interactions::Lifeline”

• Both languages have pre-defined primitive types. All the primitive types that 
are in MOLA – String, Integer, Boolean – are also in Lx. 

• Each  Kernel::Enumeration  instance is  transformed  to  Lx::Enumeration 
instance  and  each  Kernel::EnumerationLiteral instance  is  transformed  to 
Lx::EnumerationLiteral instance owned by the appropriate enumeration.



• Each  Kernel::Generalization  instance is transformed to  Lx::Generalization 
instance.  Of  course,  general and  specific links  are  set  to  the  appropriate 
classes.  This  implementation  of  the  L0  does  not  allow  multiple 
generalization; thus, it cannot be used in MOLA either. 

• Each  Kernel::Association  instance  is  transformed  to  Lx::Association, and 
appropriate  association  ends  that  are  represented  as  Kernel::Property 
instances linked by  memberEnd link to the association are transformed to 
Lx::AssociationEnd  instances.  They  are  linked  to  the  appropriate  class 
instances. Multiplicity, ordering and composition information of association 
ends are also transformed directly to Lx.

• Each  Kernel::Property instance that  is  an  attribute  is  transformed  to  an 
Lx::Attribute instance. Since MOLA allows only primitive or enumeration-
typed attributes, the correspondence is direct. 

An example of the transformation is given in Fig. 8.

class Kernel::Classifier;
class Kernel::Class;
class Kernel::Property;
enum VisibilityKind : {public,private,package};

      compos Kernel::Class.[0..1]class/ownedAttribute[*].Kernel::Property;
attr Kernel::Classifier.isAbstract:Boolean;
attr Kernel::Property.isDerived:Boolean;
attr Kernel::Property.isReadOnly:Boolean;
attr Kernel::Property.AggregationKind:AggregationKind;
attr Kernel::Property.VisibilityKind:VisibilityKind;
rel Kernel::Class.subClassOf.Kernel::Classifier;

Fig. 8. An example of MOLA to Lx metamodelling language

6.2   Mapping of the Procedure Headers

MOLA procedures  form the  executable  part  of  a  MOLA transformation.  The  L3 
language also has procedures. Both MOLA and L3 procedures may have parameters 
that may be in (passed by value) or in-out (passed by reference). Both languages may 
have variables declared. In  L3, the class-typed variables and parameters are called 
pointers and  have  a  different  syntax,  so  compiler  must  distinguish  class-typed 
variables from enumeration and primitive-typed variables. Each non-reference class-



element  that  is  used  in  rules  in  a  MOLA  procedure  is  transformed  to  a  pointer 
declaration. Actually, the transformation of procedure header is straightforward and 
does not need detailed description. An example of the transformation of a MOLA 
procedure header is shown in Fig. 9 (the L3 code in all examples is used to better 
illustrate the result of compilation. Actually, the compiler produces instances of the 
model of an L3 program)

main procedure ExampleProcedure( Param:String, 
Param1:&Interactions::Lifeline
);

var Var:Enumeration1;
pointer Var1:Interations::Message;
pointer ClElem:Interactions::Message;

Fig. 9. Procedure header to L3

6.3   Mapping of the Execution Control Flows

The basic  statements  of  MOLA  are  rule  and  for-each  loop.  There  also  are  other 
MOLA statements  –  text-statement,  call-statement,  etc.  Control  flows are  used  to 
determine the order of execution of MOLA statements within one MOLA procedure.

There is  exactly one start-statement  in a  MOLA procedure.  It  defines  the entry 
point of the MOLA procedure. Other statements may pass the execution control to 
another  statement  or terminate the execution of the procedure.  End-statements  are 
used to terminate the execution of the procedure. They define the exit points of the 
MOLA procedure. The execution of the procedure may also be terminated by a text-



statement or a rule if the corresponding control flow is not present. Actually, a text-
statement and a rule are used as traditional branching constructs (they may have two 
outgoing control flows, one of them labelled ELSE). A for-each loop contains nested 
MOLA statements (loop-body) that are executed during each iteration. It has a special 
statement – loop header (rule-based loophead), which defines the entry point to the 
loop-body.  There  may  be  any  other  MOLA  statement  in  the  loop  (except  start-
statement) – nested loops are also allowed. A statement that has no outgoing control 
flow terminates the current  iteration of the loop. A branching statement  may also 
terminate the current  iteration of the loop if  one of  outgoing control  flows is  not 
present. Other statements (call-statement, etc) just pass the execution control to the 
next  statement.  Control  flows in  MOLA procedure  may connect  statements  in  an 
almost arbitrary way, there are only few restrictions. Incoming control flows are not 
allowed to the start-statement and loophead. Outgoing control flows are not allowed 
from end-statements. It is not allowed to “jump” into a loop from an outside statement 
either (it is allowed to “jump” out).

Control  flows and MOLA statements  form a directed graph,  where  some nodes 
(loops) may contain a nested graph. This graph is the control flow graph (CFG) of a 
MOLA procedure.  The  control  flow graph  is  a  data  structure  used  by  traditional 
compilers for analysis and optimization of program execution [33, chapter 10].

The most natural way to code the control flow graph in a textual language is to use 
a labelled block of code for every node and a “jump” command for every edge. Thus 
each node of the MOLA control flow graph will compile to the block of L3 code. The 
block of code must  start  with a  label  command that  unambiguously identifies the 
block. The execution control is passed to another code block using a goto command. 
If the execution of the MOLA procedure must be terminated, then a return command 
is used.
According to the different types of statements described above, we can distinguish 
five types of nodes in the control flow graph of the MOLA procedure and define the 
mapping to L3 language for these types:

• Entry node (start-statement) is a unique and mandatory node. Here we do a 
little  optimization – no L3 code  block is  created  for  start-statement.  The 
outgoing  control  flow determines  the  first  MOLA  statement  that  in  turn 
determines the first code block of the procedure.

• Exit node (end-element) is compiled to the following code block (in what 
follows, a simple template language is used – L3 keywords are bolded, other 
parts  of  code  are  shown  in  angular  braces  containing  an  intuitive 
description):

label <label name>;
return;

• Simple node (call-statement) may not have an outgoing ELSE control flow. 
It is compiled to a simple code block – a sequence of commands depending 
on the actual type of MOLA statement and the goto command to the label 
command  of  the  code  block  that  is  created  from  the  MOLA  statement 
connected by the outgoing control flow.



label <label name>;
<sequence of commands>;
goto <next label name>;

• Branching node (rule, text-statement) may have two outgoing control flows, 
where one of them may be an  ELSE  control flow. It is compiled to an  if-
then-else command. The if-block contains the condition, then-block contains 
the action part of the MOLA rule or text-statement and else-block contains a 
goto command to the label command of the code block that is created from 
the MOLA statement connected by the outgoing ELSE control flow. The last 
command in the main code block is the goto command to the label command 
of the code block that is created from the MOLA statement connected by the 
other (non-ELSE) outgoing control flow.

label <label name>;
if 

begin
<condition commands>;

end
then 

begin
<action commands>;

end
else

begin
goto <next else label name>;

end;
goto <next label name>;

label <label name>;
foreach <loop variable name> suchthat

begin
<loophead condition commands>;

end
do

begin
label <loophead label name>;
<loophead action commands>;
goto <loophead next label name>;
label <loop iteration end label name>;

end
goto <next label name>;



• Loop node (for-each loop) contains a nested control flow graph. Since a loop 
and its loophead can not be used separately,  a common L3 code block is 
created  for  both nodes.  A loop is  compiled  to  a  foreach  command.  The 
such-that block contains the condition, the do block contains the action part 
of the loophead. The  do  block also contains a  goto command to the  label 
command  of  the  code  block  that  is  created  from  the  MOLA  statement 
connected  by  the  outgoing  from  the  loophead  control  flow.  The  last 
command in the do block is a label command. This label is used to receive 
back the execution control from the code blocks that terminate an iteration of 
the loop. Thus, a MOLA statement which terminates the execution of the 
current  iteration  of  the  loop  passes  the  execution  control  to  this  label 
command instead of terminating the execution of the whole procedure.  In 
fact, the execution control is passed away from the  do  block of a  foreach 
command, but it is received back just at the end of an iteration. Thus, the 
code blocks that are created from MOLA statements within the loop body 
are included in the corresponding L3 loop body indirectly – using goto and 
label  commands.  The  last  command  in  the  main  code  block  is  a  goto 
command to the  label  command of the code block that is created from the 
MOLA statement connected by the outgoing control flow of the loop.

The complete code of the procedure is assembled using code blocks obtained in the 
way just  described.  The first  code block is  determined  by the start-statement.  All 
other code blocks may be added to the procedure in an arbitrary order because the 
order of execution is determined only by label and goto commands – not by the order 
in which command blocks are added to the procedure.
The result will be likely a sort of “spaghetti  code” [46], but this causes no danger 
because the L3 code is just an intermediate code which is compiled further. This code 
is not read by a transformation developer. The wide usage of the goto commands does 
not cause any loss in the overall performance.

6.4   Mapping of MOLA Statements

The control structure aspect of the mapping of MOLA statements to L3 commands 
has already been described in the previous section. This section contains a detailed 
description of the mapping for each MOLA statement including data processing and 
pattern matching aspects.
The  mapping  for  start  and  end  statements  has  already  been  described.  The  start-
statement  is  used  to  determine  the  first  MOLA  statement  and  end-statement  is 
transformed to the return command.

6.4.1   Call-Statement

The  call-statement is transformed to the  call  command. Since the mapping from a 
MOLA procedure to L3 procedure is one-to-one, the called L3 procedure is the same 
that is mapped from the MOLA procedure called by the MOLA call-statement. The 
L3 language allows only binary expressions to be used as actual parameters of the call 
command. MOLA allows arbitrary expressions (of appropriate  type) to be used as 
actual parameters (the same problem is for calling functions in an expression). Our 



solution is to use temporary variables or pointers (depending on the actual type of a 
parameter)  and  setVar  or  setPointer commands  to  calculate  the  values  of 
expressions.  These  commands  must  be  executed  before  the  call command.  If  the 
actual parameter is a MOLA variable, parameter, or class element identifier, then a 
temporary variable is not used. An example of the compilation is shown in Fig. 10.

var temp_var1:String;
var temp_var2:Integer;
begin
…
label id_lab1;
setVar temp_var1=”constant”;
setVar temp_var2=564+c.intAttr:Integer;
call test(a,temp_var1,temp_var2);
goto id_labx;
…

Fig. 10. The compilation of the call-statement

6.4.2   Text-Statement

As it  was  described  before,  the  text-statement is  transformed  to  the  if-then-else 
command. MOLA text-statement has two main parts – a condition (constraint), which 
is  expressed using OCL-style expression, and a list  of assignments.  The condition 
holds if the expression evaluates to true. The condition is compiled to the if block of 
the if-then-else command. Assignments are compiled to the then block of the if-then-
else command.

Assignments are used in the text statement to assign values to elementary variables 
and pointers. The L3 commands that are used for this task are setVar and setPointer. 
In MOLA the value that is being assigned is expressed using a simple expression of 
an appropriate type. A simple expression of  Integer  type may contain Integer-typed  
variable,  parameter  or  attribute  specifications,  Integer  constants,  pre-defined 
functions (size, indexOf, toInteger) and arithmetic operations (addition, subtraction, 
multiplication). A simple expression of String type may contain String-typed variable, 
parameter  or  attribute  specifications,  String  constants,  pre-defined  functions 
(toLower,  toUpper,  substring,  toString),  and  a  concatenation  operation.  A  simple 
expression  of  Boolean  type  may  contain  Boolean-typed  variable,  parameter  or 
attribute specifications,  Boolean  constants (true and  false),  or pre-defined function 
(isTypeOf,  isKindOf,  toBoolean).  A  simple  expression  of  enumeration  type  may 
contain enumeration-typed variable, parameter or attribute specification, enumeration 
literals  or  a  pre-defined function  toEnum.  A simple expression of  class  type  may 
contain a  class-typed  variable or parameter specification (pointer),  null  constant or 
typecast.

In L3 similar expressions are allowed, but there are a few differences: there is no 
direct typecast of a pointer, actual parameters in a function call may be only a binary 
expression of an appropriate type. The list of pre-defined functions in L3 does not 
match all the pre-defined functions of the MOLA language either. The solutions to 



these problems are rather simple. In addition, some kinds of expressions in L3 allow 
more features than in MOLA, but these features are not relevant for MOLA compiler.
The complete table of correspondence is shown in Table 1.

Table 1. Correspondence of elements used in expressions in MOLA and L3

MOLA L3

String,  Integer,  Boolean,  enumeration-
typed constants, NULL constant +

elementary variables, pointers +
attribute specification +
+,-,*,concatenation +
direct typecast (class-typed) temporary  variable  and  extra 

setPointer command used
function call temporary  variables  and  extra 

setVar commands  for  complex 
parameters used 

pre-defined functions extended library of native functions 
used

toEnum, toInteger, toString, toBoolean +
indexOf, toLower, toUpper extended library used
size, substring +
isTypeOf, isKindOf temporary  variable  and  type 

command used
The left column describes features used in MOLA expressions and the right column 
shows the correspondence in L3. The plus sign (+) means that the mapping is direct. 
If there is no direct mapping, the basic principles of a solution are shown. It may be 
the usage  of  a  temporary variable  (typecast  and function call)  or  the usage  of  an 
extended library of native functions (indexOf, toLower, toUpper functions).

Though  L3  expressions  allow  Boolean  operations,  they  cannot  be  used  with 
relations.  Relational  operators  (<,  >,  etc)  may  be  used  only  in  var and  pointer 
commands. That makes the compilation of Boolean expressions used in MOLA more 
difficult.

In MOLA the simplest condition is a simple expression of the Boolean type. Then it 
is compiled using a temporary variable and a var command in the following way:

Condition:

<simple boolean 
expression>

if
begin

[<extra commands>]
setVar temp_var=<simple boolean expression>;
var temp_var==true;

end
…



Usually a condition also contains a relation (>, <, >=, <=, =, <> operators can be 
used). Since the left and the right operands may be arbitrary expressions of the same 
type, the value of each expression is computed and stored in a temporary variable. 
Then these variables are compared using a var or pointer command depending on the 
type of expressions.

Condition:

<expression1><relation> 
<expression2>

if
begin

[<extra commands>]
setVar/setPointer temp_var1=<expression1>;
[<extra commands>]
setVar/setPointer temp_var2=<expression2>;
var/pointer temp_var1<relation>temp_var2;

end
...

A condition in MOLA may also contain Boolean operations – conjunction (and), 
disjunction (or), and negation (not) – together with relational operators. The L3 has 
no such features, but it is shown [18, chapter 4] that it is possible to construct L3 code 
that implements the Boolean operations. The algorithm implemented in MOLA to L3 
compiler uses the same principles.

Our template language will be used to explain this algorithm. An extension of the 
template  language  is  required  –  let  us  define  a  function 
PrintBooleanExpression(variable_name,boolexpression) that returns the block of L3 
code that calculates the value of the Boolean expression boolexpression and stores it 
in the variable whose name is passed by the parameter variable_name. The use of this 
function means that the code block returned by the function replaces the function call. 
We will also need an auxiliary procedure  CreateBooleanVariable(varname), which 
adds  the  declaration  of  a  new  Boolean variable  whose  name  is  passed  by  the 
parameter varname. Variable and label names having a prefix unique are considered 
to be unique within the procedure. 

If  the  parameter  boolexpression  is  a  simple  expression  of  type  Boolean  or  a 
relation, then the function PrintBooleanExpression will return the following code:

boolexpression=<simple 
boolean expression>

[<extra commands>]
setVar variable_name =<simple boolean expression>;

boolexpression=
<expression1><relation><expr
ession2>

setVar variable_name =false;
[<extra commands>]
setVar unique_temp_var1=<expression1>;
[<extra commands>]
setVar unique_temp_var2=<expression2>;
var unique_temp_var1<relation> unique_temp_var2 else 
unique_label;
setVar variable_name =true;
label unique_label;



If the parameter  boolexpression contains Boolean operators and, or, not,  then the 
function will return the following code

boolexpression= 
boolexpression1 or 
boolexpression2

CreateBooleanVariable (“unique_temp_var1”)
CreateBooleanVariable (“unique_temp_var2”)
PrintBooleanExpression(“unique_temp_var1”, boolexpression1)
PrintBooleanExpression(“unique_temp_var2”, boolexpression2)
setVar variable_name=true;
var unique_temp_var1==false else unique_label;
var unique_temp_var2==false else unique_label;
setVar variable_name=false;
label unique_label;

boolexpression= 
boolexpression1 and 
boolexpression2

CreateBooleanVariable (“unique_temp_var1”)
CreateBooleanVariable (“unique_temp_var2”)
PrintBooleanExpression(“unique_temp_var1”, boolexpression1)
PrintBooleanExpression(“unique_temp_var2”, boolexpression2)
setVar variable_name=false;
var unique_temp_var1==true else unique_label;
var unique_temp_var2==true else unique_label;
setVar variable_name=true;
label unique_label;

boolexpression= not 
boolexpression1

CreateBooleanVariable (“unique_temp_var1”)
PrintBooleanExpression(“unique_temp_var1”, boolexpression1)
setVar variable_name=true;
var unique_temp_var1==true else unique_label;
setVar variable_name=false;
label unique_label;

An example of the compilation of a MOLA text-statement is shown in picture Fig. 11.
if begin

setVar _mvar_6=false;
setVar _mvar_9=s;
setVar _mvar_10="Star";
var _mvar_9==_mvar_10  else 
_mlabel_8;
setVar _mvar_6=true;
label _mlabel_8;
setVar _mvar_7=false;
setVar _mvar_12=par;
setVar _mvar_13=0;
var _mvar_12>_mvar_13  else 
_mlabel_11;
setVar _mvar_7=true;
label _mlabel_11;
setVar _mvar_4=false;
var _mvar_6==true else _mlabel_5;
var _mvar_7==true else _mlabel_5;
setVar _mvar_4=true;



label _mlabel_5;
var _mvar_4==true;

end then begin
setVar _mvar_14=  c.name:String
+"Star";
setVar s= toUpper(_mvar_14);
setVar par= Length(s)+1;

end else begin
return;

end;

Fig. 11. The compilation of the text-statement

6.4.3   Rule

Another, and the most important, decision statement in MOLA is a  rule. It  is also 
compiled to the if-then-else command. The condition of the rule is expressed using a 
pattern.  The  implementation  of  pattern  matching  typically  is  the  most  demanding 
component  to  implement  and  also  the  key  factor  determining  the  implementation 
efficiency.  The efficiency of the implementation of the pattern matching is not the 
central  theme  of  this  paper.  The  chosen  realization  of  the  pattern  matching 
implements  some  ideas  that  have  been  already  described  in  [28].  This  approach 
guarantees sufficient efficiency of the pattern matching for typical MOLA use cases.

The basic elements of the pattern are class-elements and association-links. A class-
element  represents  the instance  of  the particular  class.  There  are  several  types  of 
class-elements,  but  only  normal and delete class-elements  are  used  to  specify  a 
pattern.  Let  us  call  them  pattern  elements.  In  addition,  only  normal  and  delete  
association-links are used to specify a pattern. Let us call them pattern links. Pattern 
elements and pattern links form the pattern graph. Pattern elements that are linked by 
pattern links form the pattern fragment (connected component of the pattern graph). 
A  pattern  may  contain  several  pattern  fragments  that  can  be  treated  as  separate 
patterns. All pattern fragments must match for the whole pattern to match. The main 
goal  of  the  pattern  matching  is  to  find  particular  instances  that  match  the  given 
pattern. The sought instances are represented by non-reference pattern elements. The 
pattern links,  reference class elements,  and constraints on class elements form the 
pattern constraint. Actually, such a set of instances is sought that matches the pattern 
constraint.

The pattern is compiled to a block of L3 code which is placed in the if block of the 
if-then-else  command. Several pattern fragments are compiled to separate L3 code 
blocks  following  each  other.  Natural  constructs  in  L3  language  that  implement 
patterns  are  first-suchthat and  first-from-by-suchthat  commands.  A  pattern 
fragment  is  thus  compiled  to  a  nested  first-suchthat or  first-from-by-suchthat 
command.

To  achieve  this  goal,  the  pattern  graph  must  be  traversed  and  appropriate 
commands built.  The  classical  graph  traversing  techniques  are  used – a  recursive 
algorithm that marks already traversed nodes and edges [47].



The first task is to decide which pattern element will be processed first – let us call 
it  a  root node.  This  is  an important  task because  this decision affects  the overall 
performance  of  the  pattern  matching.  The  main  idea  is  to  reduce  the  number  of 
instances that must be examined to match or fail the pattern. If the pattern fragment 
contains a reference element, then the traversing of the pattern graph must be started 
from this element. This version of MOLA language also allows to denote the root 
element manually, using special compiler-related annotations.

The algorithm starts the processing of the graph with the root node:
• root node – is marked as traversed. 

o If  it  is  a  non-referenced  class-element,  then  the  first-suchthat 
command  is  created.  The  such-that  command  block  of  the 
command is selected as the current command block. L3 commands 
that are obtained from the local constraint of the class-element are 
placed in the such-that block of the created command. 

o If  it  is  a  referenced  class  element,  then  L3  commands  that  are 
obtained from the local constraint of the class element are placed in 
the if block of the if-then-else command.

o All nodes connected by adjacent edges (pattern links that have not 
yet been traversed) are processed.

• Other (non-root) nodes are processed in the following way – the edge which 
is used to reach this node is marked as traversed.

o If  the node has  been  already traversed,  then a  link  command is 
added to the current command block.

o If the node has not been traversed, then it is marked as traversed.
 If it is a reference class-element, then a  link command is 

added to the  current command block. L3 commands that 
are obtained from the local constraint of the class element 
are placed in the if block of the if-then-else command.

 If it is a non-reference class-element, then the first-from-
by-suchthat command is added to the  current command 
block. The such-that command block of the this command 
is selected as the  current command block. L3 commands 
that  are  obtained  from  the  local  constraint  of  the  class 
element are placed in the  such-that block of the created 
command.

 All nodes connected by adjacent edges that have not yet 
been traversed are processed.

The local  constraints of  pattern elements  are  processed  in the same way as  the 
condition of the text-statement.
An example of the compilation of a pattern is given in Fig. 12.



if begin
first p:Kernel::Property from c 
by ownedAttribute suchthat 
begin

setVar _mvar3=p.name:String;
setVar _mvar4=”value”;
var _mvar3==_mvar4;
first t:Kernel::Type from p by 
type;

end;
end
then
….

Fig. 12. The compilation of the rule-pattern
Actually,  the algorithm described above realizes the principles of MOLA Virtual 

Machine  described  in  [28].  This  algorithm builds  an  efficient  L3  code  if  MOLA 
language constructs are used in a natural way. The practical usage of MOLA compiler 
has also shown that the natural use of MOLA constructs leads to an efficient pattern 
matching.  Thus,  the  current  implementation  is  sufficient  enough  for  typical  tasks 
(MDA, tool building). However, the algorithm can be enhanced in order to achieve a 
better  performance  in  less  typical  situations.  For  example,  if  the  pattern  does  not 
contain a reference pattern-element or annotated pattern-element, then a more detailed 
analysis  of  the  pattern  graph  should  be  performed.  The  multiplicities  of  the 
associations  that  correspond  to  the  association-links  used  in  the  pattern  could  be 
analyzed. The direction of traversing the graph should be chosen so that the “going” 
along  an  association  in  the  direction  of  ‘*’  multiplicity  is  minimized.  More 
complicated algorithms for  the pattern matching have been used typically in rule-
based  transformation  languages,  for  example,  VIATRA  [48].  This  problem  (the 
pattern matching efficiency) is not the main topic of this paper; therefore, it is not 
discussed in-depth.

The action part of a rule consists of class-elements, association links, and attribute 
assignments that are included in class elements. The create and delete class-elements 
are used to create and delete particular instances. The create and delete  association-
links are used to create and delete links. The assignment is used to assign the value of 
the attribute of a particular instance. The value is specified by using expressions that 
have  been  already  described  in  previous  sections.  The  correspondence  between 
MOLA and L3 constructs is shown in Table 2.

Table 2. Correspondence of constructions used in the action part of the rule

MOLA L3

create, delete class-elements addObj, deleteObj commands
create, delete association-links addLink, deleteLink commands
attribute value assignments setAttr commands



The L3 code that is created for the action part of the rule is placed in the then block 
of the if-then-else command. An example of the compilation of the action part of a 
rule is shown in Fig. 13.

If begin …end
then begin

addObj pr:Kernel::Property;
addLink pr.type.c;
setAttr c.name="Student";
setAttr pr.name="attendant";
deleteLink 
c.owningPackage.pack;
deleteObj pack;

end else
…

Fig. 13. The compilation of the rule – action part

6.4.4 For-each loop

The  last  MOLA  statement  described  in  this  chapter  is  the  for-each  loop.  The 
implementation of a loop is one of the crucial  issues in the implementation of the 
MOLA compiler. An incorrectly chosen search structure may cause serious efficiency 
problems. 

The condition of a loop is expressed by using the pattern of the loophead, which 
contains a special class-element – the loop variable. The iteration is performed over 
all instances that correspond to the loop variable.

The  loop  is  compiled  to  the  foreach  command.  The  condition  of  the  loop  is 
compiled to the  such-that block of the  foreach  command. The compilation of the 
loophead pattern is similar to the compilation of the rule pattern. The pattern match 
starts  from  the  loop  variable  (it  is  chosen  as  the  root  node).  Usually  there  is  a 
restriction-path – a path from a referenced class element to the loop variable where 
all multiplicities of the corresponding associations are ‘0..1’ or ‘1’. Then for this path, 
first-from-suchthat  commands are created and added to the code block before the 
foreach  command.  The loop variable  is  used as  the loop variable in  the  foreach 
command.  All  nodes  and  edges  that  have  been  already  processed  (appropriate 
commands built for the loop variable and class-elements in the restriction path) are 
marked traversed, and the algorithm used for the compilation of a rule is executed.

This algorithm is not the most optimal either, but it is suitable for most of typical 
examples – usually there is a restriction path. Further optimization of the algorithm is 
not addressed in this paper.

The action part of the loophead is compiled in the same way as the action part of a 
rule. The created code is added to the  do block of the  foreach  command. Fig. 14 
illustrates an example of the compilation of a loop.



foreach p:Kernel::Property from c 
by ownedAttribute suchthat
begin

first  type:Class from  p by 
type;

end do begin
setAttr  p.name=c.name:String 
+ type.name:String;
goto _mlabel_10;
label _mlabel_9;

end;
goto _mlabel_23;
...
label _mlabel_10;
call test(type);
goto _mlabel_9;
...

Fig. 14. The compilation of the loop

The mapping of the most important MOLA constructs to L3 has been defined in this 
chapter.

7   The surrounding of the MOLA compiler

This  chapter  introduces  the  problems  that  have  been  discovered  during  the 
implementation of the MOLA compiler. The compiler is the most important part of 
the implementation of a programming or transformation language. However, there are 
other parts needed in a proper development environment.

7.1 Error handling in MOLA

The compiler detects syntax errors in a program. Usually a development environment 
of a textual programming language provides the possibility to navigate to errors in a 
code.  A list  of errors  is  shown and the appropriate  “problematic” line of  code is 
highlighted.  Similar  requirements  can  also  be applied  to  the  MOLA development 
environment. Since MOLA is a graphical language, there are no “lines of code”, as it 
is  in  textual  languages.  Each  element  that  has  a  visual  representation  (MOLA 
statement, class-element, etc) can be treated as a “line of code”. The MOLA compiler 
must  detect  errors  in  a  program  and  point  to  the  appropriate  element.  Actually, 
MOLA  compiler  does  not  “know”  anything  about  the  visual  representation  of  a 



MOLA  element.  Thus,  the  visualization  of  an  error  is  done  by  the  development 
environment.

Our  solution  is  to  store  the  error  information  in  the  error  model.  The  error  
metamodel is very simple (see Fig. 15).

Fig. 15. The error metamodel

In fact, there is only one class (ErrorMessage). It represents a particular error. There 
are  two  attributes  –  the  attribute  text contains  the  textual  information  and  type 
determines whether it is a warning or an error. The association element represents an 
“error pointer” to the appropriate element in a MOLA transformation (any MOLA 
element inherits from the Kernel::Element, see Fig. 3). The MOLA compiler deletes 
the existing error model and creates a new one in the process of compilation. The 
MOLA2  Tool  reads  the  error  model  and  visualizes  it.  An  example  of  the  error 
visualization is shown in Fig. 16.
The list  of  errors  is  shown in the properties  tab.  It  is  possible  to navigate  to  the 
corresponding MOLA procedure from there. The elements pointed by the compiler 
are highlighted.  This  is  an adequate  way to  treat  the error  handling problem in a 
graphical language.

Fig. 16. The visualization of errors in a MOLA procedure.



7.2 Structuring a program in MOLA

Another feature provided by modern development environments is the possibility to 
compile only part of the code if the whole program has already been compiled. This is 
needed for large programs, when a compilation takes a significant amount of time. To 
achieve this goal, the program has to be structured. The most common approach is to 
use code units. Each unit is compiled to a separate object. Next, a linker is used to 
obtain a single executable.

A similar idea is also used in the MOLA2 Tool. Packages are used to structure a 
MOLA program. A package may be defined as a MOLA unit. It means that all MOLA 
procedures that are contained by the unit are compiled to a separate L0 unit. This 
allows using L0 compiler as a linker that assembles all L0 units into one C++ project. 
Thus, model transformations (MOLA and L3-L0’compilers) can work with smaller 
models that helps to improve the overall performance of the compilation process.

7.3 Debugging in MOLA

If a program is successfully compiled, it means that it is syntactically correct, but it 
does  not  mean  that  the  program  is  semantically  correct.  Testing  is  a  common 
approach used by a program developer. If a bug is found, then it must be fixed. This 
process is called  debugging. The debugging process requires a tool support to ease 
this process. Tools used for debugging are called debuggers.

Typically,  debuggers offer functions such as running a program step by step and 
pausing the program to examine the current state of the program to track the values of 
some variables. Some debuggers have the ability to modify the state of the program 
while it is running. The importance of a good debugger is very high. The existence of 
such a tool can often be the deciding factor in the use of a language, even if another 
language is more suited to the task.

However, a debugger for the MOLA2 Tool has not yet been developed. There are 
examples  of  a  debugger  of  a  graphical  language,  for  example,  the  UML Model 
Debugger [49]. There are differences between the debugger of a textual language and 
the debugger of a graphical language. The main difference is in the representation of 
the single-stepping approach.  Since graphical  languages  are usually represented  in 
diagrams, an animation of the program execution is required. Other representations 
could also be used, but they would be rather far from the concepts of the language. 

An interpreter or instrumentation by an additional code in the compilation result 
may be used for the debugging purposes. The execution of a single MOLA statement 
could be considered as one step in the step-by-step debugging process. The result of 
the compilation of a MOLA program is L3 code. Since this code consists of code 
blocks that correspond to one MOLA statement, these blocks could be supplemented 
with a debugging code in a rather simple way.

There is another widely used but not so sophisticated way of the debugging. The 
trace (log) files can be used to trace the execution of a program. The current version 
of the MOLA compiler uses the L0 debugging feature – the L0 trace file. It logs an 
execution of every L0 command. However, the L0 tracing operates with L0 concepts. 
Therefore, a tracing that is at a closer abstraction level to the MOLA is needed.



8   Conclusions and Future Work

A sufficiently  efficient  implementation  of  the  MOLA  to  L3  compiler  has  been 
described in this paper. The MOLA compiler has already been used practically in the 
area of tool  building.  The transformations that  are used for implementation of the 
MOLA2 Tool within the METAclipse framework are developed using the MOLA to 
L3  compiler.  The  MOLA2  Tool  that  includes  the  second  version  of  the  MOLA 
compiler  is  successfully  being  used  in  the  European  IST  6th  framework  project 
ReDSeeDS [50].  Traditional  MDA tasks  are  being  implemented  in  MOLA there. 
These  tasks  include  transformations  from formalized  software  requirements  to  an 
architecture model of the system to be built and then to a detailed design model. Thus, 
the efficiency of the chosen architecture has been approved by practical usage. In both 
cases,  non-trivial  MOLA  transformations  have  been  developed  and  applied  to 
sufficiently large models.

On the one hand, the future work is related to the problems discussed in chapter 7. 
The practical  usage  of  MOLA has shown that  the problem of debugging is  quite 
significant. It should be noted that building both a user-friendly and sufficiently high-
level debugger for model transformation languages, especially for graphical ones, is 
quite a challenging task. On the other hand, improvements in the implementation of 
the  MOLA  compiler  are  also  expected  –  a  more  advanced  algorithm  of  pattern 
matching for  MOLA will  be developed.  These improvements  should ensure more 
efficient execution for less typical  MOLA transformations. In addition, the model-
driven compiling briefly sketched in this paper also deserves a more detailed research.
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